30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Endgeschwindigkeit und Luftwiderstand 02:51 min

Textversion des Videos

Transkript Endgeschwindigkeit und Luftwiderstand

Unmittelbar nach dem Absprung spüren Fallschirmspringer den Geschwindigkeitsrausch des freien Falls mit circa 60 Metern pro Sekunde, das ist schneller als die Höchstgeschwindigkeit vieler Autos. Glücklicherweise schlagen sie nicht mit dieser Geschwindigkeit auf dem Boden auf, weil der Fallschirm ihre Endgeschwindigkeit auf ein sicheres Maß reduziert. Die Endgeschwindigkeit ist die maximale konstante Geschwindigkeit, die ein fallender Gegenstand erreicht. Da die Endgeschwindigkeit konstant ist, müssen sich die Schwerkraft und die Reibungskraft gegenseitig aufheben. Fallende Körper werden in Richtung Erde beschleunigt, weil ihre Masse von der Erde angezogen wird. Wenn ein fallender Körper seine Endgeschwindigkeit erreicht, wird er nicht mehr beschleunigt. Durch die ständigen Zusammenstöße mit Luftmolekülen während des Falls wird eine aufwärts gerichtete Kraft erzeugt – der Luftwiderstand. Wenn die Geschwindigkeit des Körpers zunimmt, steigt auch der Luftwiderstand. Wenn sich Schwerkraft und Luftwiderstand ausgleichen, wird der Körper nicht mehr beschleunigt und fällt mit der konstanten Endgeschwindigkeit. Je nach den speziellen Eigenschaften des fallenden Objekts variiert diese Endgeschwindigkeit stark. Sie steigt mit dem Gewicht des Objekts. Ein schwereres Objekt wird länger beschleunigt, bevor der Luftwiderstand so groß ist, dass er die beschleunigende Schwerkraft ausgleicht. Das Objekt erreicht eine höhere Endgeschwindigkeit. Zusätzlich hängt die Größe des Luftwiderstands und damit die Endgeschwindigkeit von der Form des fallenden Gegenstands und der Größe seiner Oberfläche ab. Wenn ein Fallschirmspringer das Flugzeug verlässt, ist seine Oberfläche zunächst sehr klein und er kann eine hohe Geschwindigkeit erreichen, bevor der Luftwiderstand die Schwerkraft ausgleicht. Beim Öffnen des Fallschirms vervielfacht sich die Oberfläche, mit der nun viel mehr Luftmoleküle zusammenstoßen und damit den aufwärts gerichteten Luftwiderstand vergrößern. Das verringert die Endgeschwindigkeit. Ohne die Verringerung der Endgeschwindigkeit durch den Fallschirm wäre diese Extremsportart tödlich.

3 Kommentare
  1. War super !

    Von Wtoews, vor 7 Monaten
  2. @Luis Ella W.,
    es sind in diesem Fall eher Geländefahrzeuge. Aber es funktioniert natürlich auch mit noch schwereren Lasten.

    Wir versuchen militärische Beispiele zu vermeiden, jedoch wirft das Militär am häufigsten größere Lasten aus Flugzeugen in dieser Form ab.

    Liebe Grüße aus der Redaktion.

    Von Karsten Schedemann, vor 8 Monaten
  3. schön erklärt
    passende beispielvideos

    sind das panzer die im video abgeworfen werden????

    Von Luis Elia W., vor 8 Monaten

Endgeschwindigkeit und Luftwiderstand Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Endgeschwindigkeit und Luftwiderstand kannst du es wiederholen und üben.

  • Nenne die Möglichkeiten den Freien Fall zu beeinflussen.

    Tipps

    Der Luftwiderstand der beiden Kugeln ist gleich.

    Lösung

    Die Endgeschwindigkeit eines fallenden Objekts wird erreicht, wenn die Luftreibung so groß wird, dass sie die Gravitationskraft der Erde ausgleicht. Die Luftreibung hängt dabei vor allem von der Angriffsfläche und der Geschwindigkeit eines Objektes ab. Aus diesem Grund ist der Luftwiderstand eines Fallschirms umso höher, je größer seine Fläche ist. Zudem hängt die Luftreibung von der Form dieser Angriffsfläche ab. An der Spitze einer Pyramide kann die Luft beispielsweise besser vorbeiströmen als an ihrem flachen Boden, deshalb ist der Luftwiderstand geringer, wenn die Pyramide mit der Spitze voraus fällt. Damit steigt auch die Endgeschwindigkeit. Weil aber nur die Fläche entscheidend ist, gegen die die Luft drücken kann, ist die Länge eines Gegenstandes nicht entscheidend für seinen Luftwiderstand.

    Auch die Masse eines Objektes verändert den Luftwiderstand nicht. Allerdings sorgt eine höhere Masse für eine stärkere Anziehung aufgrund der Gravitationskraft. Beispielsweise wird die schwerere Goldkugel stärker beschleunigt als die gleich große Holzkugel. Deshalb erreicht sie eine höhere Endgeschwindigkeit.

  • Nenne Maßnahmen zur Senkung der Endgeschwindigkeit.

    Tipps

    Kann Robert seine Angriffsfläche erhöhen?

    Lösung

    Um seinen Fall zu bremsen, muss Robert seinen Luftwiderstand erhöhen. Dazu kann er die Fläche erhöhen, gegen welche die Luft drückt. Zusätzlich kann er versuchen, dieser Fläche die richtige Form zu geben. Wenn sich Robert zu einer Kugel zusammenrollt, wird seine Angriffsfläche kleiner und zudem aerodynamischer, sodass sich seine Endgeschwindigkeit sogar erhöhen würde. Er kann versuchen, seinen Zylinder als Fallschirm zu verwenden, allerdings ist dessen Angriffsfläche zu klein, um Roberts Fall zu bremsen. Vermutlich würde es Robert allerdings etwas helfen, wenn es ihm gelingt, seinen Regenmantel auszubreiten, sodass sich die Luft darin fängt. So würde er seine Oberfläche erhöhen und der Regenmantel würde zudem eine Halbkugel bilden, die einen besonders hohen Luftwiderstand hat.

    Robert könnte zusätzlich versuchen, die Erdanziehungskraft zu verringern, die auf ihn wirkt. Dazu könnte er den Goldsack abwerfen, um seine Masse zu verringern.

    Schließlich könnte Robert auch versuchen, im Wasser zu landen, damit sein Bremsweg etwas länger wird und er nicht direkt auf dem harten Boden aufschlägt.

  • Berechne den Kraftstoffverbrauch.

    Tipps

    Ein Joule (J) entspricht einem Newtonmeter (N$\cdot$m), beziehungsweise $1\text{J}=1\text{Nm}=1\text{kg}\frac{\text{m}^2}{\text{s}^2}$.

    Bestimme zunächst, welche Kraft der Luftwiderstand bei den jeweiligen Geschwindigkeiten erzeugt. Multipliziere diese Kraft dann mit dem Fahrtweg, um die Arbeit zu berechnen.

    Lösung

    Um die bremsende Wirkung des Luftwiderstandes auszugleichen, muss Jans Auto ständig Arbeit verrichten. Diese berechnet sich aus der Kraft des Luftwiderstandes, die mit dem gesamten Fahrtweg multipliziert wird, also $W=0,30\frac{\text{kg}}{\text{m}}\cdot v^2\cdot s_{Fahrtweg}= 30000\text{kg}\cdot v^2$.

    Auf dem Hinweg ist bei einer Geschwindigkeit von $v_{hin}=130\text{ }\frac{\text{km}}{\text{h}}=36\text{ }\frac{\text{m}}{\text{s}}$ eine Arbeit von $W_{hin}= 30000\text{kg}\cdot 36^2\frac{\text{m}^2}{\text{s}^2}=38,9\text{ MJ}$ nötig.

    Bei einem Wirkungsgrad des Motors von $0,7$ werden aber $54\text{ MJ}$ also 6 Liter Benzin benötigt.

    Auf dem Rückweg verrichtet das Auto bei einer Geschwindigkeit von $v_{zurück}=100\text{ }\frac{\text{km}}{\text{h}}=28\text{ }\frac{\text{m}}{\text{s}}$ eine Arbeit von $W_{zurück}= 30000\text{kg}\cdot 28^2\frac{\text{m}^2}{\text{s}^2}=23,5\text{ MJ}$.

    Die Differenz beträgt also 15,4 Megajoule, die das Auto auf dem Hinweg zusätzlich verrichten muss.

    Wenn in 6 Litern Benzin eine Energiemenge von 54 Megajoule steckt, dann liefert jeder Liter Benzin etwa 9 Megajoule an Energie, die der Motor bei einem Wirkungsgrad von 70% in 6,3 Megajoule Bewegungsenergie umwandelt. Daher benötigen wir also 2,4 Litern weniger Benzin für den Rückweg.

  • Bestimme den Luftwiderstand der Formen.

    Tipps

    Die Tragflächen eines Flugzeugs sehen im Profil tropfenförmig aus.

    Ein Football fliegt weiter als ein runder Ball mit dem gleichen Gewicht.

    Lösung

    Eine Tropfenform, wie die eines Wassertropfens, können Luftmoleküle sehr gut umströmen, deshalb ist ihr Luftwiderstand besonders gering. Etwas höher ist der Luftwiderstand bei einem ellipsoiden Körper, wie beispielsweise bei einem Football oder einem Ei. Die Luftmoleküle fließen erst kurz hinter der abgerundeten Form an der Rückseite wieder zusammen. So entsteht direkt hinter dem Körper ein kleiner Unterdruck, der bremsend wirkt und so den Luftwiderstand erhöht. Etwas stärker ist dieser Effekt bei einer Kugel, da diese noch stärker von der Tropfenform abweicht als der etwas spitzere Ellipsoid.

    Auch bei der Pyramidenform entsteht ein bremsender Unterdruck, der durch die flache Rückseite noch deutlich höher ist. Der Würfel hat schließlich den höchsten Luftwiderstand, weil sowohl die Vorderseite, als auch die Rückseite flach sind. Vorne drücken die Luftmoleküle gegen den Würfel und können kaum daran vorbeifließen und hinten entsteht wiederum ein bremsender Unterdruck.

  • Sortiere die Objekte nach ihrer maximalen Fallgeschwindigkeit.

    Tipps

    Der Kopf eines Menschen ist nur etwas größer als eine Bowlingkugel.

    Falken sind die Rekordhalter beim schnellen Sturzflug.

    Lösung

    Der Körperbau eines Falken ist darauf ausgelegt, mühelos durch die Luft zu gleiten und die Luftströmung genau zu lenken. Dies kommt ihm auch beim schnellen Sturzflug zugute, sodass Falken eine Geschwindigkeit von bis zu $322\frac{\text{km}}{\text{h}}$ erreichen können. Ein Mensch ist im freien Fall deutlich langsamer, auch wenn Fallschirmspringer ihre Angriffsfläche verkleinern können, indem sie sich mit dem Kopf voraus fallen lassen. Sie können dann bis zu $200\frac{\text{km}}{\text{h}}$ schnell werden.

    Eine Bowlingkugel ist zwar für ihre Größe sehr schwer, aber nicht so aerodynamisch geformt wie ein Vogel. Zudem ist das Gewicht eines kopfüber fallenden Menschen im Vergleich zu seiner Angriffsfläche deutlich höher als das einer Bowlingkugel. Deshalb erreicht eine Bowlingkugel auch eine langsamere Fallgeschwindigkeit von etwa $120\frac{\text{km}}{\text{h}}$.

    Den größten Luftwiderstand hat hier der Fallschirm, der durch seine große Angriffsfläche die Fallgeschwindigkeit eines Fallschirmspringers auf etwa $12\frac{\text{km}}{\text{h}}$ bis $20\frac{\text{km}}{\text{h}}$ senken kann.

  • Bestimme die Fallgeschwindigkeiten.

    Tipps

    Beide Schwestern werden durch die gleiche Gravitationskraft beschleunigt.

    Teste die Antworten, indem du die jeweiligen Geschwindigkeiten von Sofie in die Formel einsetzt (z. B. $2\cdot v$ statt $v$).

    Lösung

    Wenn beide Schwestern ihre jeweiligen Endgeschwindigkeiten erreicht haben, müssen die Luftwiderstände jeweils die Gravitationskraft der Erde ausgleichen. Da beide Schwestern als Zwillinge gleich schwer sind, wirkt auch die Gravitationskraft auf beide gleich stark und auch die Luftwiderstände müssen gleich groß sein. Vereinfacht muss deshalb das Produkt aus der Fallschirmfläche $A$ und dem Quadrat der Geschwindigkeit $v$ für beide Fälle gleich groß sein. Es muss also gelten: $A_{Sofie}\cdot v_{Sofie}^2=A_{Sofia}\cdot v_{Sofia}^2$. Da Sofias Fallschirm viermal so groß ist wie der von Sofie, gilt auch $A_{Sofie}\cdot v_{Sofie}^2=4\cdot A_{Sofie}\cdot v_{Sofia}^2$. Wenn wir nun durch Sofies Fallschirmfläche teilen und die Wurzel ziehen, ergibt sich $v_{Sofie}=\sqrt{4\cdot v_{Sofia}^2}=2\cdot v_{Sofia}$. Sofie fällt also doppelt so schnell wie Sofia.