30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Reibungskräfte 08:03 min

Textversion des Videos

Transkript Reibungskräfte

Willkommen bei meinem neuen Video zum Thema der Reibungskräfte. Reibung tritt in der Physik fast bei allen mechanischen Prozessen auf. Meist verkompliziert sie das Ausgangsproblem und wird daher oft vernachlässigt. Wir wollen hier aber einmal einen etwas genaueren Blick auf die Reibung und das ganze Drumherum nehmen. Wir beginnen mit einer kleinen Einführung und eine Art Definition von Reibung. Als zweiten Punkt erzähle ich euch dann, wie man das Phänomen der Reibung erklären und beschreiben kann. Zum Schluss wollen wir uns dann noch ein paar wichtige Formeln und Beispiele zu diesem Thema ansehen. Dabei wird uns dann auch der Reibungskoeffizient begegnen. Als Grundlage zu diesem Video solltet ihr euch schon mit Kräften im Allgemeinen auseinandergesetzt haben und die Grundbegriffe kennen. Ihr solltet vor allem auch wissen, was mit der Normalkraft und der Gewichtskraft gemeint ist. Doch beginnen wir mit unserem eigentlichen Thema. Reibung ist die Hemmung einer Bewegung durch die Berührung zweier Körper. In dieser Beschreibung sind drei Worte besonders wichtig. Zuerst einmal die Bewegung. Reibung hat prinzipiell etwas mit Bewegung zu tun. Befindet sich ein Körper in völliger Ruhe und ist kräftefrei, so wirkt keine Reibung auf ihn. Erst wenn wir versuchen, ihn zu bewegen, merken wie die Reibungskraft. Weiter handelt es sich um eine hemmende Kraft, sie wirkt also genau in die entgegengesetzte Richtung bezogen auf die Bewegung. Schieben wir unser Objekt nach links, so wirkt sie nach rechts, als ob jemand von der anderen Seite dagegen drückt. Sie wirkt also der ausgeübten Kraft entgegen und verlangsamt so zum Beispiel die Bewegung. Das dritte wichtige Wort unserer kleinen Definition ist die Berührung. Die Reibungskraft scheint also etwas mit dem Berühren der Oberflächen zu tun zu haben, und das betrachten wir im nächsten Kapitel, in dem wir uns überlegen wollen, wie Reibung entsteht. Wir überlegen uns als Beispiel einen Karton, der auf einem Tisch steht. Wie schon angedeutet, entsteht die Reibungskraft an den sich berührenden Oberflächen dieser beiden Objekte. Denn auch wenn sich der Karton und der Tisch glatt anfühlen, so täuscht der Eindruck. Würde man sich die Oberfläche der Körper unter dem Mikroskop ansehen, so würde einem auffallen, dass sie ganz und gar nicht glatt ist. Die Oberfläche der meisten Objekte gleicht eher einer wilden Hügellandschaft. Diese Hügel und Täler sind aber so klein, dass das menschliche Auge sie meist nicht sieht und die Oberfläche glatt erscheint. Das gilt sowohl für den Karton als auch für den Tisch. Schieben wir nun also den Karton über den Tisch, so stoßen die Hügel der beiden ständig aneinander und bremsen die Bewegung ab. Wir beschreiben dies durch eine Reibungskraft, die in die entgegengesetzte Richtung wirkt und unsere Bewegung hemmt. Man unterscheidet mithilfe dieses Erklärungsansatzes zwischen verschiedenen Arten von Reibung. In diesem Video will ich euch die Gleitreibung und die Haftreibung erklären. Hierzu nehmen wir nochmal unseren Karton auf dem Tisch zur Hilfe. Außerdem brauchen wir noch einen Federkraftmesser, mit dem wir die Reibungskraft auf den Karton bestimmen wollen. Die Haftreibung wirkt auf einen ruhenden Körper. Wir müssen eine recht große Kraft aufbringen, bevor sich der Karton anfängt zu bewegen. Am Federkraftmesser lässt sich die Kraft ablesen, bei der der Karton gerade noch stehen bleibt. Diese entspricht nun genau der Haftreibungskraft. Bei jeder geringeren Krafteinwirkung bleibt der Karton unbewegt. Ziehen wir nun etwas mehr an den Karton, so fängt er an, sich über den Tisch zu bewegen. Auf den Körper wirkt nun nicht mehr die Haftreibungskraft, sondern die Gleitreibungskraft. Diese ist im Allgemeinen um einiges geringer als die wirkende Kraft der Haftreibung. Haben wir den Karton erst einmal angeschoben und die Haftreibung überwunden, so können wir ihn recht einfach umherschieben. Natürlich lässt sich die Reibungskraft auf einen Körper auch berechnen. Die hierfür nötige Formel ist recht einfach und kompakt. Sie lautet FR = u * FN. Betrachten wir alle Teile einzeln. FR ist natürlich der Betrag der Reibungskraft, den wir ausrechnen wollen. FN beschreibt den Betrag der Normalkraft, also die Kraft, die rechtwinklig zur Oberfläche steht. Was dieser Wert aussagt und wie man ihn über ein Kräfteparallelogramm bestimmt, solltet ihr ja bereits wissen. Das neue Formelzeichen ist nun der Reibungskoeffizient u. Er wird auch manchmal Reibungszahl genannt und beschreibt, wie stark die Reibung zwischen zwei Oberflächen ist. Vereinfacht kann man sich vorstellen, dass er aussagt, wie rau und hügelig die sich berührenden Oberflächen sind. Er hat keine physikalische Einheit, sondern ist eine einfache Zahl. Wenn der Reibungskoeffizient hoch ist, so ist die Reibung sehr hoch und es fällt einem schwer, ein Objekt über eine Oberfläche zu schieben. Die Reibungszahl hängt dabei hauptsächlich von den Materialien der beiden reibenden Körper ab. Einen besonderen Fall haben wir, wenn es sich um eine horizontale Fläche handelt, über die ein Körper geschoben wird, denn dann ist die Normalkraft gleich der Gewichtskraft FG</sub, die sich über die Masse m und die Erdbeschleunigung klein g berechnet. Die Formel vereinfacht sich dann zu FR = u * m * g. Diese Formel kann für die meisten einfachen Reibungsprobleme benutzt werden. Zu diesen Formeln gibt es zwei wichtige Beobachtungen: zum einen den sehr vorteilhaften Umstand, dass sie sowohl für die Haft- als auch für die Gleitreibung gelten. Der einzige Unterschied ist, dass wir für beide Reibungsarten unterschiedliche Werte für den Reibungskoeffizienten u einsetzen müssen. Meistens bezeichnet man die Haftreibungszahl deshalb mit einem Index groß H und die Gleitreibungszahl entsprechend mit U groß G. Wie schon erwähnt, ist der Reibungskoeffizient der Haftreibung allgemein größer als der der Gleitreibung. Als zweites fällt euch vielleicht auf, dass in der Formel weder der Flächeninhalt der Auflagefläche noch die Geschwindigkeit des Körpers vorkommt. Dies widerspricht meist der Intuition und sollte deswegen besonders hervorgehoben werden. Die Reibungskräfte hängen beide lediglich von den Materialien und der Normalkraft ab. Die reibenden Materialien bestimmen nämlich den Reibungskoeffizienten. Betrachten wir nun ein paar Beispiele, um ein Gefühl für die Größen zu erhalten. Will man eine Kiste aus Stahl über eine horizontale Fläche schieben, die ebenfalls aus Stahl ist, so muss man zuerst die Haftreibung überwinden. Der entsprechende Haftreibungskoeffizient ist ungefähr 0,2. Wiegt die Kiste zwei Kilogramm, so können wir die auftretende Haftreibungskraft leicht berechnen. Die Erdbeschleunigung beträgt bekanntermaßen 9,81 m/s². Wir erhalten so eine Haftreibungskraft von ungefähr FR = 4 N. Möchte man die Kiste im Anschluss weiter schieben, so ist sie in Bewegung und es wirkt die Gleitreibungskraft anstelle der Haftreibungskraft. Der entsprechende Gleitreibungskoeffizienten UG beträgt circa 0,1, ist also nur halb so groß wie der bei der Haftreibung. Die wirkende Gleitreibungskraft ist dementsprechend ebenfalls halb so groß, anders gesagt 2 N. Es gibt hierbei natürlich undenkbar viele Kombinationsmöglichkeiten von sich reibenden Materialien und entsprechenden Reibungszahlen. Einige davon habe ich hier einmal aufgelistet. Damit möchte ich mich verabschieden und wünsche euch noch viel Spaß beim weiteren Entdecken der mysteriösen Reibung, euer Philip Physik.

12 Kommentare
  1. Karsten

    @Hamhoevmansur,

    die Erdbeschleunigung, ist unterschiedlich stark, je nachdem auf welcher geographischen Breite und in welcher Höhe über dem Meeresspiegel man sich befindet. Und natürlich spielt es auch eine Rolle, auf welchem Himmelskörper man sich gerade befindet.

    Liebe Grüße aus der Redaktion

    Von Karsten Schedemann, vor 4 Monaten
  2. Default

    Ummuntu71 die erdbeschleunigung ist immer gleich

    Von Hamhoevmansur, vor 4 Monaten
  3. Default

    sehr gut

    Von Deleted User 699378, vor 5 Monaten
  4. Karsten

    @Finn,

    du bist bei jeder Bewegung den Reibungskräften ausgesetzt. Ohne Reibung würdest du erst zum Stoppen kommen, wenn du durch eine andere äußere Kraft, wie zum Beispiel eine Mauer, zum Stillstand gebracht wirst. Und jede Straße wäre so rutschig, wie ein zugefrorener Teich.

    Ob du sie nun verstehen möchtest oder nicht, brauchen tust du sie.

    Von Karsten Schedemann, vor 7 Monaten
  5. Default

    alter das braucht man nieeeee im leben

    Von Finn 16, vor 7 Monaten
  1. Janis%281%29

    war ganz gut aber ich habe es in der 7.klasse noch nicht ganz verstanden aber war trotzdem ein gutes video

    Von Janis K., vor 8 Monaten
  2. Default

    bei mir hat er dei verabschiedung irgentwann gemacht ist das normal?

    Von J Meissner 1, vor mehr als einem Jahr
  3. Default

    Hilfreich guckt es euch an.Ich habe es vorher in der Schule nie kapiert .Du machst einen guten job Philip Rupp

    Von CHRISTIAN k., vor mehr als 2 Jahren
  4. Default

    nie kapiert

    Von Lea Baumann, vor mehr als 2 Jahren
  5. Aue minion

    Hallo
    Wie gehts

    Von Schule.2016, vor mehr als 2 Jahren
  6. Default

    Ist die Erdbeschleunigung eigentlich immer gleich?

    Von Ubuntu71, vor etwa 3 Jahren
  7. Default

    Unglaublich, jetzt klappt es mit logisch denken, danke!

    Von Dw 69, vor etwa 5 Jahren
Mehr Kommentare

Reibungskräfte Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Reibungskräfte kannst du es wiederholen und üben.

  • Nenne die Einflussgrößen.

    Tipps

    Unterscheide die Arten der Reibung.

    Je schwerer ein Objekt, desto größer seine Reibung.

    Lösung

    Der Betrag der Reibungskraft hängt im Wesentlichen von zwei Größen ab: der Normalkraft $F_N$ und den Reibungskoeffizienten $u_H$ und $u_G$.

    Die Koeffizienten $u_H / u_G$ charakterisieren dabei die Eigenschaften der reibenden Oberflächen. Haften sie stark aneinander, liegt ein hoher Wert für $u$ vor. Haften sie kaum, so wird der Wert gering.

    Generell unterscheidet man die Koeffizienten nach Gleitreibung (hier wirkt $u_G$) und Haftreibung mit $u_H.

    Die Normalkraft ist die Kraft, die senkrecht auf der reibenden Oberfläche steht. Für den Fall, dass diese waagerecht ist, entspricht die Normalkraft $F_N$ der Gewichtskraft $F_G$.

    Alternativ zum $u$ wird auch häufig das $\mu$ verwendet.

  • Gib die unterschiedlichen Arten der Reibung an.

    Tipps

    Die Haftreibungskraft ist meistens größer als die Gleitreibungskraft.

    Man unterscheidet die Haft- und Gleitreibung anhand unterschiedlicher Reibungskoeffizienten $u_H$ und $U_G$

    Lösung

    Die Reibung kann in unterschiedlichen Formen auftreten.

    Ist ein Körper in Ruhe, so wirkt die Haftreibungskraft auf diesen. Dadurch bleibt etwa das Auto am Hang stehen oder eine Kiste auf dem Tisch. (Läuft man einen Berg hoch, so ist der Schuh ja auch immer kurze Zeit in Ruhe, wenn man auftritt.)

    Ist ein Körper in Bewegung, so wirkt die Gleitreibung. Diese ist in der Regel geringer als die Haftreibung.

    Man unterscheidet die Beträge der wirkenden Reibungskräfte anhand der Reibungskoeffizienten $u_G$ und $u_H$.

  • Gib an, wo die Reibungskraft wirkt, wenn wir die Kiste nach rechts verschieben möchten.

    Tipps

    Reibung hemmt eine Bewegung.

    Die Reibung ist auch abhängig von der Normalkraft.

    Lösung

    Die Reibungskraft ist eine Kraft, die einer aufgewandten Kraft entgegenwirkt.

    Man definiert Reibung als die Hemmung einer Bewegung durch die Berührung zweier Körper.

    Dabei muss eine Berührung vorliegen, an der zwei Flächen aneinander reiben. Dabei wird die Reibung umso größer, je rauer die Flächen sind. Generell sind auch Flächen, die wir mit dem Auge als glatt erkennen, unter dem Mikroskop rau, sodass auch auf glatten Flächen Reibung entsteht.

    Die Stärke der Reibungskraft hängt außerdem von der Normalkraft $F_N$ auf die beschriebene Fläche ab. Je größer die Kraft $F_N$, desto stärker werden die Flächen aneinandergepresst und die Reibungswirkung steigt.

  • Berechne die Reibungskräfte.

    Tipps

    Beachte die Einheiten.

    Unterscheide, ob Gleit- oder Haftreibung vorlegt.

    Im horizontalen Fall ist die Normalkraft gleich der Gewichtskraft.

    Lösung

    Um den Betrag einer wirkenden Reibungskraft zu berechnen, behelfen wir uns mit der gezeigten Formel.

    Darin ist $u$ der Reibungskoeffizient, welcher die Reibungswirkung zwischen zwei Materialien quantitativ darstellt.

    Dabei müssen wir zwischen der Gleitreibung und dem dazugehörigen Koeffizienten $u_G$ und der Haftreibung mit Koeffizienten $u_H$ unterscheiden.

    Solange die reibende Fläche horizontal ist, ist die Normalkraft $F_N$ gleich der Gewichtskraft $F_G$

    Somit können wir rechnen $F_R = u \cdot F_G$.

    Wichtig ist wie so oft, die Einheiten zu beachten! Wähle die Masse in $kg$, sonst führen deine Rechnungen zu falschen Ergebnissen.

  • Zeige den Verlauf der Reibung.

    Tipps

    Haftreibung liegt vor, solange ein Gegenstand in Ruhe ist.

    Gleitreibung ist mit einer Geschwindigkeit verbunden.

    Lösung

    Wirkt eine Kraft auf einen Gegenstand, der sich in Ruhe befindet, so können wir mit dem Verlauf der Kraft $F$ über der Auslenkung $x$ eine Aussage über die Reibungskräfte treffen.

    Solange eine Kraft aufgewandt wird, aber der Ort konstant bleibt, so liegt Haftreibung vor, bis der Zustand der maximalen Haftung oder die Grenzhaftung erreicht ist.

    Wird diese überschritten, so bewegt sich der Gegenstand; dieser gleitet nun. Dabei wirkt hier die Gleitreibung $F_G$ linear über der Auslenkung $x$.

  • Bestimme die Haftreibungskräfte.

    Tipps

    Zur Berechnung der Haftreibung muss der entsprechende Koeffizient benutzt werden.

    Im horizontalen Fall ist $F_N = F_G$.

    Rechne mit der Masse in kg.

    Lösung

    Um den Betrag einer wirkenden Reibungskraft zu berechnen, behelfen wir und der Formel $F_R = u_H \cdot F_N $.

    Darin ist $u_H$ der Reibungskoeffizient für die Haftreibung, welcher die Reibungswirkung zwischen zwei ruhenden Materialien quantitativ darstellt.

    Solange die reibende Fläche horizontal ist, ist die Normalkraft $F_N$ gleich der Gewichtskraft $F_G$ Somit können wir rechnen $F_R = u \cdot F_G$. Wichtig ist wie so oft, die Einheiten zu beachten ! Wähle die Masse in $kg$, sonst führen deine Rechnungen zu falschen Ergebnissen.