Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Arbeit und Energie

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.8 / 60 Bewertungen
Die Autor*innen
Avatar
Team Digital
Arbeit und Energie
lernst du in der 8. Klasse - 9. Klasse - 10. Klasse - 11. Klasse

Arbeit und Energie Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Arbeit und Energie kannst du es wiederholen und üben.
  • Tipps

    Es sind insgesamt drei Aussagen richtig.

    Energie ist gespeicherte Arbeit. Sie gibt einem abgeschlossenen System die Fähigkeit, Arbeit zu verrichten.

    Um das Pendel aus seiner Ruhelage anzuheben, muss Arbeit verrichtet werden. Dadurch wird dem Pendel von außen Energie zugeführt.

    Beim Loslassen des Pendels wird die zugeführte Energie genutzt, um das Pendel in Schwingung zu versetzen.

    Lösung

    Wenn an einem System Arbeit verrichtet wird, dann nimmt dessen Energie zu. Das lässt sich mathematisch mit der Gleichung $W = \Delta E$ darstellen.
    $W$ beschreibt dabei die Arbeit und $\Delta E$ steht für die Energiedifferenz, die dem System zugeführt wird.
    Energie ist somit gespeicherte Arbeit und befähigt das abgeschlossene System zur Verrichtung von Arbeit, indem die Energie übertragen oder umgewandelt wird.

    In dem Pendel-Beispiel wird das Pendel durch Hubarbeit aus der Ruhelage gebracht. Dabei gewinnt das Pendel an potentieller Energie $E_{pot}$. Beim Loslassen des Pendels wird diese potentielle Energie $E_{pot}$ in kinetische Energie bzw. Bewegungsenergie $E_{kin}$ umgewandelt.

    Damit sind die folgenden Aussagen richtig:

    • Arbeit ist eine Energieänderung.
    • Energie befähigt zur Verrichtung von Arbeit.
    • Wenn an einem System Arbeit verrichtet wird, dann nimmt dessen Energie zu.


    Da das Produkt aus Kraft $F$ und Weg $s$ für die Arbeit $W$ steht, stimmt diese Aussage im Allgemeinen nicht:

    • Arbeit ist das Produkt aus Kraft $F$ und Geschwindigkeit $v$.

  • Tipps

    Wir wissen, dass im Allgemeinen die Arbeit $W$ das Produkt von der Kraft $F$ und dem Weg der Arbeit $s$ ist.
    Das bedeutet, es gilt:

    $ W = F \cdot s$

    Für die Hubarbeit $W_{Hub}$ muss die Formel angepasst werden: Bei der Hubarbeit wird gegen die Gewichtskraft $F_G$ gearbeitet, sodass ein Objekt auf die Höhe $h$ kommt.

    Die Gewichtskraft $F_G$ ist das Produkt der Masse $m$ und dem Ortsfaktor $g$.
    Es gilt:

    $ F_G = m \cdot g$

    Lösung

    Im Allgemeinen gilt für die Arbeit $W$, dass $W$ das Produkt von Kraft $F$ und Weg der Arbeit $s$ ist. Mathematisch bedeutet das:

    $W = F \cdot s$

    Für die Hubarbeit müssen die Begriffe „Kraft“ und „Weg“ auf die Situation angepasst werden:
    Bei der Hubarbeit wird gegen die Gewichtskraft $F_G$ gearbeitet, sodass ein Objekt auf die Höhe $h$ kommt.
    Das bedeutet, für die Hubarbeit gilt:

    $W_{Hub} = F_G \cdot h$

    Mit der Gewichtskraft $F_G = m \cdot g$ ergibt sich dieser Zusammenhang für das Pendel am höchsten Punkt:

    $W_{Hub}= \Delta E_{pot}$

    $\Leftrightarrow \quad F_G \cdot h = \Delta E_{pot}$

    $\Leftrightarrow \quad m \cdot g \cdot h = \Delta E_{pot}$

  • Tipps

    Die potentielle Energie nennt man auch Lageenergie, weil etwas zum Beispiel die Fähigkeit „zu fallen“ hat. Je höher etwas angehoben wird, desto mehr potentielle Energie hat es.

    Die kinetische Energie nennt man auch Bewegungsenergie. Diese haben Körper, die sich bewegen.
    Bewegen sie sich schneller, steigt auch die kinetische Energie.

    Lösung

    Bevor ein Pendel schwingen kann, muss ihm von außen Energie zugeführt werden. Das geschieht, indem wir an dem Pendel Hubarbeit verrichten und es anheben und auslenken. Dadurch gewinnt das Pendel an potentieller Energie $E_{pot}$. Lässt man das Pendel jetzt los, wandelt sich diese potentielle Energie beim Schwingen kontinuierlich um. Das können wir so beschreiben:

    1. Wenn das Pendel ausgelenkt ist, dann wird an dem Pendel Hubarbeit $W_{Hub}$ verrichtet. Dem System wird dadurch Energie von außen zugeführt. Die potentielle Energie $E_{pot}$ ist dann maximal und die kinetische Energie $E_{kin} = 0$.

    2. Wenn das Pendel zu schwingen beginnt, dann wandelt sich die potentielle Energie $E_{pot}$ kontinuierlich in kinetische Energie $E_{kin}$ um. Das Pendel wird schneller.

    3. Wenn das Pendel den niedrigsten Punkt erreicht, dann hat das Pendel die Energiedifferenz $\Delta E$, die von der Hubarbeit $W_{Hub}$ verrichtet wurde, vollständig umgewandelt. Die kinetische Energie $E_{kin}$ ist an diesem Punkt maximal und die potentielle Energie ist $E_{pot} = 0$.

    4. Wenn das Pendel wieder am höchsten Punkt ankommt, dann ist die kinetische Energie erneut $E_{kin}=0$ und die potentielle Energie $E_{pot}$ maximal. Dann wiederholt sich der ganze Prozess, ohne dass am System Arbeit verrichtet werden muss.

  • Tipps

    Das Pendel startet am höchsten Punkt und fällt herunter. Dort ist die potentielle Energie $E_{pot}$ am höchsten.

    Schaue dir an, wie sich die potenzielle Energie verhält: Steigt oder fällt sie am Anfang?

    Nach dem Loslassen gewinnt das Pendel an Geschwindigkeit und die kinetische Energie $E_{kin}$ steigt.

    Lösung

    Beim Loslassen des Pendels ist die potentielle Energie $E_{pot}$ maximal und die kinetische Energie $E_{kin} = 0$, da sich das Pendel am höchsten Punkt befindet und sich noch nicht bewegt.
    Beim Herunterfallen wird das Pendel beschleunigt und seine Geschwindigkeit $v$ nimmt zu. Die potentielle Energie $E_{pot}$ wird in kinetische Energie $E_{kin}$ umgewandelt.
    In dem Punkt der Ruhelage ist die Geschwindigkeit $v$ maximal und somit auch die kinetische Energie $E_{kin}$.
    Danach schwingt das Pendel weiter, bis die gesamte kinetische Energie $E_{kin}$ wieder vollständig in potentielle Energie $E_{pot}$ umgewandelt wurde. An diesem Punkt ist die potentielle Energie $E_{pot}$ des Pendels wieder am höchsten und die kinetische Energie ist $E_{kin}=0$.

    Die zu diesem Prozess passenden Diagramme sind im Lösungsbild zu erkennen.

  • Tipps

    Energie ist gespeicherte Arbeit und befähigt zur Verrichtung von Arbeit.

    Energie ist ein Zustand, während das Verrichten von Arbeit eine Handlung beschreibt.

    Lösung

    Arbeit und Energie sind sich sehr ähnlich, aber unterscheiden sich dennoch:

    Wenn an einem System Arbeit verrichtet wird, dann nimmt die Energie des Systems zu.

    Energie ist gespeicherte Arbeit, die dem System die Fähigkeit gibt, Arbeit zu verrichten. Energie beschreibt dabei einen Zustand eines Systems, wobei das Verrichten von Arbeit eine Handlung darstellt.

    Die folgenden Aussagen sind in dieser Form korrekt:

    • Hubarbeit $W_{Hub}$ wird benötigt, um ein Objekt entgegen der Gewichtskraft $F_G$ auf eine bestimmte Höhe $h$ zu bringen.
    • Potentielle Energie (Lageenergie) $E_{pot}$ beschreibt die Lage eines Objekts und dessen Fähigkeit, aus seiner Lage Arbeit zu verrichten.
    • Kinetische Energie (Bewegungsenergie) $E_{kin}$ beschreibt die Energie, die ein Objekt in Bewegung besitzt.
    • Beschleunigungsarbeit $W_{Beschl.}$ wird benötigt, um ein Objekt in Bewegung zu versetzen.
  • Tipps

    Versuche, das Beispiel mit dem Pendel auf unseren Skater Aiden zu übertragen.

    Potentielle Energie beschreibt die Fähigkeit, wegen der Schwerkraft Arbeit zu verrichten. Das bedeutet, je höher eine Person oder ein Objekt ist, desto mehr potentielle Energie besitzt die Person bzw. das Objekt.

    Lösung

    Aidens Fahrt auf der Skateboardrampe lässt sich energetisch wie das Auslenken und Loslassen eines Pendels beschreiben:

    Aiden fährt mit seinem Skateboard auf der Rampe. An der obersten Position besitzt er keine kinetische Energie. Er besitzt aber maximale potentielle Energie.

    Geht Aiden nun einen Schritt nach vorn, verrichtet er aufgrund der Schwerkraft Beschleunigungsarbeit und wandelt seine potentielle Energie in kinetische Energie um. In der Mitte der Rampe ist er am schnellsten. Seine potentielle Energie ist hier null.

    Aiden fährt mit dem Schwung weiter und kommt bis zum anderen oberen Ende der Rampe. Seine kinetische Energie hat ihm dabei geholfen, Hubarbeit zu verrichten, sodass er wieder oben ankommt. Das bedeutet, dass kinetische Energie in potentielle Energie übertragen wird. Oben hat Aiden dann maximale potentielle Energie.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.211

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen