Mechanische Arbeitsformen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Mechanische Arbeitsformen Übung
-
Gib die vier Formen der mechanischen Arbeit an.
TippsVon welchen physikalischen Arbeits- oder Energieformen hast du schon einmal gehört?
Die Arbeit ist meist nach der zugrunde liegenden Kraft benannt.
Um welche Arbeitsformen könnte es sich hierbei jeweils handeln?
a) Ein breites Gummiband wird um ein Marmeladenglas gespannt, um dieses zu verschließen.
b) Ein Formel 1 Wagen beschleunigt in 12 Sekunden auf 270 Kilometer pro Stunde.
c) Bremst ein Radfahrer für eine längere Zeit beim Bergabfahren, so werden die Bremsen heiß.
d) Ein Gewichtheber stemmt 70kg.
LösungEs gibt vier Formen der mechanischen Arbeit: die Hubarbeit, die Reibungsarbeit, die Spannarbeit und die Beschleunigungsarbeit.
So verrichtet ein Formel 1 Wagen Beschleunigungsarbeit, während er seine Geschwindigkeit erhöht.
Ein Gewichtheber, welcher Gewichte stemmt, verrichtet hingegen Hubarbeit.
Bei einer längeren Bremsung am Fahrrad reiben die Bremsen sehr stark am Rad, wodurch sich das Rad erhitzt. Es handelt sich in diesem Fall um Reibungsarbeit.
Beim Spannen eines Gummibands wird ebenfalls Arbeit verrichtet. Man spricht in diesem Fall von der Spannarbeit.
-
Gib zu den Arbeitsformen die passenden Formeln zur Berechnung an.
TippsDas physikalische Formelzeichen der Beschleunigung ist $a$, das der Fallbeschleunigung $g$.
Das physikalische Formelzeichen der Federkonstanten ist $D$.
Das physikalische Formelzeichen des Reibungskoeffizienten ist $\mu$.
LösungDie Federkonstante $D$ gibt Aufschluss, wie sehr eine Feder gespannt werden kann. Die Spannarbeit hängt demzufolge auch von der Federkonstanten ab. Somit ist die richtige Formel zur Berechnung der Spannarbeit: $W=\frac{1}{2}\cdot D \cdot \Delta s^2$.
Die Beschleunigungsarbeit hängt von der Beschleunigung $a$ ab: $W=m\cdot a \cdot \Delta s$.
Der Reibungskoeffizient $\mu$ wiederum ist notwendig zur Berechnung der Reibungsarbeit: $W=\mu \cdot F_n \cdot \Delta s$.
Um die Hubarbeit zu berechnen, ist es nicht nur wichtig zu wissen, wie hoch ich einen Gegenstand hebe und wie schwer dieser ist, sondern auch wie stark die Fallbeschleunigung ist. Auf der Erde ist diese immer gleich groß ($g=9,81\frac{m}{s^2}$). Auf dem Mond hingegen ist die Fallbeschleunigung geringer, sodass bei gleicher Masse und bei gleicher Höhe eine geringere Hubarbeit verrichtet werden muss. Die Formel zur Berechnung der Hubarbeit lautet somit: $W=m\cdot g\cdot \Delta s$.
-
Vervollständige die Sätze zur mechanischen Arbeit.
TippsVerändert sich die Geschwindigkeit eines Körpers, so spricht man von einer Beschleunigung.
Warum ist es schwerer, eine Kiste voller Bücher über einen Teppichboden zu schieben als über Fliesen?
Manche Federn kann man stärker spannen als andere. Die Federkonstante $D$ gibt an, wie sehr eine Feder gespannt werden kann.
LösungBei einer Beschleunigung (dem Anfahren oder Abbremsen eines Autos) wird grundsätzlich immer mechanische Arbeit verrichtet. Dabei unterscheidet man vier Formen von mechanischer Arbeit.
Wird ein Körper beispielsweise angehoben (eine Hantel, eine Flasche Wasser usw.), so wird Hubarbeit verrichtet. Beim Verschieben eines Gegenstands (Möbel, Kisten usw.) reiben diese auf dem Boden. Hierbei wird Reibungsarbeit verrichtet.
Spannt man eine Feder oder einen Bogen oder deformiert man einen Ball, so wird Spannarbeit verrichtet. Die vierte Form der mechanischen Arbeit nennt man Beschleunigungsarbeit, welche immer dann verrichtet wird, wenn ein Gegenstand (ein Auto, ein Fahrrad, ein Zug, ein Flugzeug etc.) beschleunigt wird.
-
Berechne die verrichtete Hubarbeit, welche eine Mutter leisten muss, um ihr 3,5 kg schweres Baby einen halben Meter anzuheben.
TippsNotiere alle gegebenen und gesuchten Größen.
Die Fallbeschleunigung auf der Erde beträgt $9,81~ \frac{m}{s^2}$.
Hast du das Ergebnis richtig gerundet?
LösungZur Lösung der Aufgabe gehen wir wie folgt vor. Zuerst schreiben wir die gegebenen und gesuchten Größen auf. Dann halten wir die Formel zur Berechnung fest und setzen anschließend die Zahlenwerte ein. Zuletzt formulieren wir noch einen Antwortsatz.
Gegeben: $m=3,5~kg$; $\Delta s=0,5~m$
Gesucht: $W_{Hub}$ in $J$
Da die Hubarbeit berechnet werden soll, nutzen wir folgende Formel: $W_{Hub}=m\cdot g \cdot \Delta s $. Die Masse und der gehobene Weg ist gegeben. Die Fallbeschleunigung $g$ ist eine Naturkonstante und ist dem Tafelwerk zu entnehmen: $g=9,81~ \frac{m}{s^2}$. Diesen Wert solltest du dir gut merken. Er ist sehr wichtig für zahlreiche Berechnungen in der Physik.
Berechnung (Einsetzen der Zahlenwerte): $W_{Hub}=m\cdot g \cdot \Delta s =3,5~kg\cdot 9,81~\frac{m}{s^2} \cdot 0,5~m=17,2~kg\frac{m}{s^2}\cdot m=17,2~Nm=17,2~J$.
Wie oben verlangt, wurde das Ergebnis auf eine Stelle nach dem Komma gerundet.
Antwortsatz: Die Mutter verrichtet beim Heben des Babys eine Hubarbeit von $17,2~J$.
-
Gib an, welche Form der mechanischen Arbeit beim Loslassen der Masse hauptsächlich verrichtet wird.
TippsDie Hubarbeit wird in der Regel genutzt, um die Arbeit anzugeben, welche beim Hochheben eines Objekts verrichtet wird.
Wird Reibungsarbeit verrichtet, erwärmt sich in der Regel das reibende Objekt.
Wird von einem Objekt die Geschwindigkeit erhöht, wird auch Beschleunigungsarbeit verrichtet.
LösungIm Bild ist eine Feder zu erkennen, an welcher ein Gewicht angehängt wird. Die Feder wird sich aufgrund des Gewichtes ausdehnen beziehungsweise spannen. Die mechanische Arbeit, welche hierbei verrichtet wird, nennt sich Spannarbeit.
-
Berechne die jeweils gesuchte mechanische Arbeit.
TippsSchreibe dir für alle drei Aufgaben jeweils die gegebenen und gesuchten Größen auf.
Kannst du an den gegebenen und gesuchten Größen erkennen, welche Formel du jeweils benötigst?
$W_R=\mu \cdot F_n \cdot \Delta s$
$W_B=m\cdot a \cdot \Delta s$
$W_S=\frac{1}{2}D \cdot \Delta s^2 $
LösungZur Lösung der Aufgabe gehen wir bei jeder Teilaufgabe gleich vor. Zuerst schreiben wir die gegebenen und gesuchten Größen auf. Dann halten wir die Formel zur Berechnung fest und setzen anschließend die Zahlenwerte ein. Zuletzt formulieren wir noch einen Antwortsatz.
1.) Holzklotz
Gegeben: $\mu=0,3$; $F_n=40~N$; $\Delta s=1~m$
Gesucht: $W_R$ in $J$
Formel: $W_R=\mu \cdot F_n \cdot \Delta s$
Berechnung: $W_R=\mu \cdot F_n \cdot \Delta s=0,3\cdot 40~N \cdot 1~m=12~Nm=12~J$
Antwortsatz: Die verrichtet Reibungsarbeit beträgt $12$ Joule.
2.) Auto
Gegeben: $m=1300~kg$; $a=12~\frac{m}{s^2}$; $\Delta s=800~m$
Gesucht: $W_B$ in $J$
Formel: $W_B=m\cdot a \cdot \Delta s$
Berechnung: $W_B=m\cdot a \cdot \Delta s=1~300~kg\cdot 12~\frac{m}{s^2}\cdot 800~m=12~480~000~kg\frac{m}{s^2}m=12~480~000~Nm=12~480~000~J$
Antwortsatz: Die verrichtete Beschleunigungsarbeit beträgt $12~480~000$ Joule.
3.) Feder
Gegeben: $D=250~\frac{N}{m}$; $\Delta s=0,6~m$
Gesucht: $W_S$ in $J$
Formel: $W_S=\frac{1}{2}D \cdot \Delta s^2 $
Berechnung: $W_S=\frac{1}{2}D \cdot \Delta s^2=\frac{1}{2}\cdot 250~\frac{N}{m}\cdot (0,6~m)^2=125~\frac{N}{m}\cdot 0,6^2~m^2=45~\frac{N}{m}m^2=45~Nm=45~J$
Antwortsatz: Die verrichtete Spannarbeit beträgt $45$ Joule.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie