Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Gleichmäßig beschleunigte Bewegung

Die Beschleunigung ist eine physikalische Größe, die angibt, wie sich die Geschwindigkeit eines Objekts im Verlauf einer Bewegung verändert. Erfahrt, wie sie in der Physik definiert ist und warum sie für Veränderungen in der Bewegung relevant ist. Interessiert ihr euch? Dies und vieles mehr findet ihr im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Gleichmäßig beschleunigte Bewegung

Was ist Beschleunigung?**

1/3
Bewertung

Ø 3.4 / 88 Bewertungen
Die Autor*innen
Avatar
Team Digital
Gleichmäßig beschleunigte Bewegung
lernst du in der 8. Klasse - 9. Klasse - 10. Klasse - 11. Klasse

Gleichmäßig beschleunigte Bewegung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Gleichmäßig beschleunigte Bewegung kannst du es wiederholen und üben.
  • Tipps

    Überlege dir, was eine gleichmäßig beschleunigte Bewegung ausmacht: Was ergibt sich rein aus der Bezeichnung für die physikalischen Größen?

    Überlege dir auch Folgendes: Du sitzt in einem Auto. Die fahrende Person drückt nun das Gaspedal bis zum Ende durch. Das Auto wird gleichmäßig beschleunigt und zwar von $0$ $\frac{\text{km}}{\text{h}}$ auf $100$ $\frac{\text{km}}{\text{h}}$.

    Bei einer gleichmäßig beschleunigten Bewegung erfährt das Auto also immer die gleiche Beschleunigung und wird dadurch natürlich immer schneller. Überlege dir, was dies für die zurückgelegte Strecke bedeutet, wenn du immer schneller wirst.

    Lösung

    Wenn ein Körper gleichmäßig beschleunigt wird, dann heißt das, dass er immer schneller wird. Seine Geschwindigkeit erhöht sich also fortlaufend. Eines verändert sich dabei allerdings nicht: die Beschleunigung. Bei der Erdbeschleunigung sind das rund $9{,}81~\dfrac{\text{m}}{\text{s}^2}$. So ergibt sich ${\dfrac{\text{m}}{\text{s}^2}}$ als Einheit der Beschleunigung.

    Bei einer gleichmäßig beschleunigten Bewegung gibt es eine konstante Beschleunigung ${\color{#99CC00}{\mathbf{a}}}$. Die Geschwindigkeit ${\color{#99CC00}{\mathbf{v}}}$ steigt mit der Zeit ${\color{#99CC00}{\mathbf{t}}}$ an. Die zurückgelegte Strecke ${\color{#99CC00}{\mathbf{s}}}$ wächst quadratisch mit der Zeit und ist ebenfalls von $a$ abhängig.

    Für die Geschwindigkeit $v$ ergibt sich:

    $v=a \cdot t$

    Für die zurückgelegte Strecke gilt:

    $s=\dfrac{1}{2}\cdot a\cdot t^2$

    Gibt es eine Anfangsgeschwindigkeit $v_{0}$ und eine Anfangsstrecke $\color{#99CC00}{\mathbf{s_{0}}}$, müssen diese in die Formeln mit einbezogen werden. Diese lauten dann wie folgt:

    $v=a \cdot t+v_{0}$

    $s=\dfrac{1}{2}\cdot a\cdot t^2+v_{0}\cdot t+s_{0}$

  • Tipps

    Die Formel für die Geschwindigkeit lautet:

    $v=a\cdot t$

    Stelle sie nach der gewünschten Größe um.

    Bedenke, dass die Geschwindigkeit in $\frac{\text{km}}{\text{h}}$ angegeben ist. Das Ergebnis soll jedoch in Sekunden berechnet werden: Überlege, wie du es umrechnen kannst.

    Lösung

    Um die Zeit zu berechnen, die das Auto benötigt, musst du alle gegebenen Werte in die Formel einsetzen und umstellen. Die Formel lautet:

    $v=a\cdot t$

    Da die Zeit $t$ gesucht ist, muss die Formel nach $t$ umgestellt werden. Dazu bringen wir $a$ auf die andere Seite, indem wir durch $a$ dividieren:

    $v=a\cdot t$ $\quad | :a$

    Daraus ergibt sich:

    $t= \dfrac{v}{a}$

    In diese Formel können wir nun alle Werte einsetzen. Wir haben eine Geschwindigkeit von $100~\frac{\text{km}}{\text{h}}$ und eine Beschleunigung von $6{,}5~\frac{\text{m}}{\text{s}^2}$ gegeben:

    $v=100~\dfrac{\text{km}}{\text{h}}$

    $a=6{,}5~\dfrac{\text{m}}{\text{s}^2}$

    Setzen wir diese Werte in die Formel ein, erhalten wir:

    $t= \dfrac{100~\dfrac{\text{km}}{\text{h}}}{6{,}5~\dfrac{\text{m}}{\text{s}^2}}$

    Da die Beschleunigung $a$ in $\frac{\text{m}}{\text{s}^2}$ und die Geschwindigkeit in $\frac{\text{km}}{\text{h}}$ angegeben ist, müssen wir die Einheit der Geschwindigkeit umrechnen. Wir rechnen also von $\frac{\text{km}}{\text{h}}$ in $\frac{\text{m}}{\text{s}}$ um.
    Dies können wir, indem wir die Geschwindigkeit $v$ geteilt durch $3{,}6$ rechnen:

    $t= \dfrac{100 : 3{,}6~\dfrac{\text{m}}{\text{s}}}{6{,}5~\dfrac{\text{m}}{\text{s}^2}}$

    Danach können wir ausrechnen und kommen zu folgendem Ergebnis:

    $t= 4{,}27~\text{s}$

  • Tipps

    Überlege dir, in welcher Einheit die jeweiligen physikalischen Größen angegeben werden.

    Die Zeit $t$ wird zum Beispiel in Sekunden, Minuten oder auch Stunden angegeben. Wenn also in den Aufgaben von Sekunden ($\text{s}$), Minuten ($\text{min}$) oder von Stunden ($\text{h}$) die Rede ist, dann handelt es sich bei diesen Angaben immer um die Zeit $t$.

    Die Geschwindigkeit $v$ wird in $\frac{\text{m}}{\text{s}}$ oder auch $\frac{\text{km}}{\text{h}}$ angegeben. Wenn also diese Einheiten in den Aufgaben auftauchen, ist stets die Geschwindigkeit $v$ gemeint.

    Die Strecke $s$ wird in Zentimeter ($\text{cm}$), Meter ($\text{m}$) oder Kilometer ($\text{km}$) angegeben. Wenn also diese Einheiten in der Aufgabe erwähnt werden, ist immer die Strecke $s$ gemeint.

    Die Beschleunigung $a$ wird in der Einheit $\frac{\text{m}}{\text{s}^2}$ angegeben. Taucht also diese Einheit in einer Aufgabe auf, ist von der Beschleunigung die Rede.

    Lösung

    Anhand der Einheiten von physikalischen Größen lässt sich immer gut bestimmen, um welche physikalische Größe es sich bei der Angabe handelt.

    • Die Zeit $t$ wird in Sekunden ($\text{s}$), Minuten ($\text{min}$) oder auch Stunden ($\text{h}$) angegeben.
    • Die Geschwindigkeit $v$ wird in $\frac{\text{m}}{\text{s}}$ oder auch $\frac{\text{km}}{\text{h}}$ angegeben.
    • Die Strecke $s$ wird in Zentimeter ($\text{cm}$), Meter ($\text{m}$) oder Kilometer ($\text{km}$) angegeben.
    • Die Beschleunigung $a$ wird in der Einheit $\frac{\text{m}}{\text{s}^2}$ angegeben.

    Mit diesem Wissen werden nun die verschiedenen Szenarien untersucht:

    1. Ein Fahrzeug beschleunigt mit $\color{#99FF32}{5~\frac{\text{m}}{\text{s}^2}}$ aus dem Stand in $\color{#F3DB00}{10~\text{Sekunden}}$ auf $\color{#66D8FF}{50~\frac{\text{m}}{\text{s}}}$.

    2. Ein Fahrzeug weist eine Geschwindigkeit von $\color{#66D8FF}{13~\frac{\text{m}}{\text{s}}}$ auf und beschleunigt dann mit $\color{#99FF32}{2~\frac{\text{m}}{\text{s}^2}}$ für eine Dauer von $\color{#F3DB00}{2{,}5~\text{Sekunden}}$. Dabei legt es $\color{#FF66FF}{38{,}75~ \text{Meter}}$ zurück.

    3. Ein Fahrzeug beschleunigt aus dem Stand mit einer Beschleunigung von $\color{#99FF32}{4{,}3~\frac{\text{m}}{\text{s}^2}}$. Es benötigt $\color{#F3DB00}{11{,}63~\text{Sekunden}}$, um auf $\color{#66D8FF}{50~\frac{\text{m}}{\text{s}}}$ zu beschleunigen.

    4. Eine Person auf dem Fahrrad startet an einer Kreuzung bei Grün und erreicht nach $\color{#F3DB00}{4~\text{Sekunden}}$ eine Geschwindigkeit von $\color{#66D8FF}{30~\frac{\text{m}}{\text{s}}}$. Die Person beschleunigt mit $\color{#99FF32}{2{,}31~\frac{\text{m}}{\text{s}^2}}$.

  • Tipps

    Setze alle gegebenen Werte in die Formel ein, in der die Anfangsgeschwindigkeit berücksichtigt wird.

    Die Formel lautet:

    $s=\dfrac{1}{2}\cdot a\cdot t^2 + v_{0}\cdot t $

    Setze dort alle Werte ein und berechne.

    Du kannst der Aufgabe folgende Werte entnehmen:

    • $v_0=11~\dfrac{\text{m}}{\text{s}}$
    • $a=3~\dfrac{\text{m}}{\text{s}^2}$
    • $t=3{,}5~\text{s}$
    Lösung

    Bei der Aufgabe geht es um ein Fahrzeug, welches eine bestimme Anfangsgeschwindigkeit hat und dann für eine gewisse Zeit beschleunigt. Hier ist zu berechnen, welche Strecke es in dieser Zeit zurückgelegt hat.

    Der Aufgabe können wir folgende Größen entnehmen:

    • $v_0=11~\dfrac{\text{m}}{\text{s}}$
    • $a=3~\dfrac{\text{m}}{\text{s}^2}$
    • $t=3{,}5~\text{s}$

    Die Formel lautet:

    $s=\dfrac{1}{2}\cdot a\cdot t^2 + v_{0}\cdot t +s_{0}$

    In dieser Aufgabe gibt es keine Anfangsstrecke $s_{0}$, da nur die Strecke betrachtet wird, wo die Beschleunigung beginnt. Dieser Wert fällt am Ende also weg und es ergibt sich:

    $s=\dfrac{1}{2}\cdot a\cdot t^2 + v_{0}\cdot t$

    Das Einsetzen der gegebenen Werte liefert:

    $s=\dfrac{1}{2}\cdot 3~\dfrac{\text{m}}{\text{s}^2}\cdot (3{,}5~\text{s})^2 +11\dfrac{\text{m}}{\text{s}}\cdot 3{,}5~\text{s}$

    $s=\color{#99CC00}{\mathbf{56{,}88~\text{m}}}$

  • Tipps

    Überlege dir, was eine gleichmäßig beschleunigte Bewegung ausmacht.

    Beispiel:

    Beim freien Fall handelt es sich um eine gleichmäßig beschleunigte Bewegung.

    Beim freien Fall wird ein Objekt in Richtung des Erdmittelpunkts beschleunigt. Die Geschwindigkeit ändert sich die ganze Zeit und das Objekt fällt immer schneller.

    Lösung

    Wenn ein Körper in eine Richtung gleichmäßig beschleunigt wird, dann heißt das, dass er immer schneller wird. Seine Geschwindigkeit erhöht sich also fortlaufend. Also ist diese Aussage richtig:

    • Die Geschwindigkeit des bewegten Objekts ändert sich gleichmäßig und das Objekt bewegt sich in eine Richtung.

    Bei einer gleichmäßig beschleunigten Bewegung kann sich aber auch die Richtung ändern. Es ist also nicht notwendig, dass sich die Geschwindigkeit ändert. Eine gleichförmige Kreisbewegung, in der sich die Richtung gleichmäßig ändert, aber die Geschwindigkeit nicht, ist auch eine gleichmäßig beschleunigte Bewegung. Demanch ist diese Aussage ebenfalls richtig:

    • Die Richtung eines beschleunigten Objekts kann sich ändern.

    Die gleichmäßig beschleunigte Bewegung ist eine Bewegung, die mit einer Geschwindigkeitsänderung oder einer Richtungsänderung zusammenhängt: Das Objekt wird sich nie in Ruhe befinden und ist somit in Bewegung. Folglich ist diese Aussage falsch:

    • Bei einer gleichmäßig beschleunigten Bewegung bewegt sich der Gegenstand nicht.

    Beim Fahren einer Achterbahn beschleunigt der Wagen immer unterschiedlich: Am Anfang erfahren wir meist eine kleinere Beschleunigung als zum Beispiel in der Mitte der Fahrt. Deswegen ist diese Aussage auch falsch:

    • Beim Fahren mit einer Achterbahn handelt es sich um eine gleichmäßig beschleunigte Bewegung.

  • Tipps

    Überlege dir, welche physikalischen Größen du der Wertetabelle und dem Diagramm entnehmen kannst und was genau du berechnen sollst.

    Dem Diagramm kannst du die Zeit $t$ und die Geschwindigkeit $v$ entnehmen. Gesucht ist die Strecke $s$: Überlege dir, wie du mit einem Zwischenschritt zur gesuchten Länge kommen kannst.

    Lösung

    Du suchst die Strecke, die nach $1{,}5$ Sekunden zurückgelegt wurde.

    Die Angabe $1{,}5$ Sekunden steht für die Zeit $t$. Diese ist in der rechten Spalte der Tabelle dargestellt.

    In der linken Spalte der Tabelle kannst du die Geschwindigkeit $v$ ablesen. Der Wert, der neben der Zeit $t$ von $1{,}5$ Sekunden steht, ist der zugehörige Wert der Geschwindigkeit $v$. Zu den $1{,}5$ Sekunden gehören also die $3~\frac{\text{m}}{\text{s}}$.

    Du hast somit folgende Werte gegeben:

    • $t=1{,}5~\text{s}$
    • $v=3~\dfrac{\text{m}}{\text{s}}$

    Gesucht ist die Strecke $s$. Diese können wir mit dieser Formel ermitteln:

    $s=\dfrac{1}{2}\cdot a\cdot t^2$

    Um die Formel verwenden zu können, benötigen wir noch die Beschleunigung $a$. Sie lässt sich berechnen mit $t$ und $v$:

    Es ergibt sich:

    $v=a\cdot t$ $\quad | :t$

    $\dfrac{v}{t}=a$

    Setzen wir jetzt die Werte für die Geschwindigkeit $v$ und die Zeit $t$ ein, erhalten wir:

    $a= \dfrac{3~\dfrac{\text{m}}{\text{s}}}{1{,}5~\text{s}} = 2~\dfrac{\text{m}}{\text{s}^2}$

    Mithilfe von $a$ kann nun die gesuchte Länge $s$ ermittelt werden:

    $s=\dfrac{1}{2}\cdot a\cdot t^2$

    $s=\dfrac{1}{2}\cdot 2~\dfrac{\text{m}}{\text{s}^2}\cdot (1{,}5~\text{s})^2$

    $s=2{,}25~\text{m}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.220

Lernvideos

38.700

Übungen

33.508

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden