Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zweite Ableitung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Wendepunkt Zweite Ableitung Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten

Was ist die zweite Ableitung?

Die Bildung der ersten Ableitung einer Funktion ist bereits bekannt. Diese wird mit $f^\prime(x)$ bezeichnet, nach verschiedenen Regeln gebildet und ist ebenfalls eine Funktion.

Aus diesem Grund kann man von dieser Funktion auch wieder eine Ableitung bilden: Es wird also die Ableitung der ursprünglichen Funktion $f(x)$ abgeleitet. Diese sogenannte „zweite Ableitung“ wäre korrekt ausgedrückt $(f^\prime)^\prime(x)$ – vereinfacht nennt man sie aber $f^{\prime\prime}(x)$ (man sagt „f zwei Strich von $x$“). Da sich hier wieder eine Funktion ergibt, könnte man weitere Ableitungen bilden, die dann entsprechend mit $f^{\prime\prime\prime}(x)$ etc. bezeichnet werden.

Wie wird die zweite Ableitung gebildet?

Die zweite Ableitung wird wie die erste Ableitung abhängig von der vorliegenden Funktion anhand der Ableitungsregeln (u. a. Potenzregel, Faktorregel und Summenregel) bestimmt.

Berechnung der zweiten Ableitung – Beispiel

$f(x) = 3x^{4}+5x^{2}-2x+12 \newline f^\prime (x) = 12x^{3}+10x-2 \newline f^{\prime\prime} (x)= 36x^{2}+10$

Was bedeutet die zweite Ableitung?

Die erste Ableitung bezeichnet die Steigung der ursprünglichen Funktion. Bildet man nun die Ableitung der Ableitung, muss dies im Folgeschluss bedeuten, dass mit der zweiten Ableitung die Steigung der ersten Ableitung – also die Steigung der Steigung – bestimmt wird. Doch was heißt das konkret?

Die zweite Ableitung hilft, das Krümmungsverhalten der Funktion $f(x)$ zu untersuchen, denn sie gibt die Änderung der Steigung an. Mit der Berechnung von $f^{\prime\prime}(x)$ kann bestimmt werden, ob es sich um eine Rechtskrümmung oder eine Linkskrümmung handelt. Ebenfalls kann man mit der zweiten Ableitung – genau wie mit der ersten Ableitung – spezielle, charakteristische Punkte der Funktion bestimmen.

Wendepunkte

Wenn die zweite Ableitung einer Funktion an einer gegebenen Stelle gleich null ist, kann bei dieser Stelle ein Wendepunkt vorliegen. Das Grundprinzip ist hier das gleiche wie bei Extrempunkten und der ersten Ableitung. Wendepunkte sind Punkte, an denen sich die Krümmung des Funktionsgraphen ändert. Er wechselt hier von einer Rechtskrümmung in eine Linkskrümmung oder umgekehrt. Um Wendepunkte zu bestimmen muss also grundsätzlich die zweite Ableitung gleich null gesetzt werden.

Ein Beispiel aus der Praxis – was bedeutet die zweite Ableitung im Sachzusammenhang?

Eine Anwendung der zweiten Ableitung lässt sich in der Physik bzw. im Alltag einer jeden Person finden. Hierbei ist die Rede von der Darstellung des Wegs in Abhängigkeit von der Zeit oder als Frage formuliert:

Welchen Weg haben ein Auto/eine Person/ein Flugzeug zu einem bestimmten Zeitpunkt zurückgelegt?

Dabei bezeichnet $x$ die vergangene Zeit und $f(x)$ den zurückgelegten Weg.

$x$ $f(x)$
$\text{Zeit}$ $\text{Weg}$

Daraus lassen sich die Bedeutungen der Ableitung schlussfolgern:

$f^\prime (x)$ $f^{\prime\prime}(x)$
$\text{Wegänderung} \rightarrow \text{Geschwindigkeit}$ $\text{Geschwindigkeitsänderung} \rightarrow \text{Beschleunigung}$

Die erste Ableitung stellt also die Änderung des Wegs dar, was im Sachzusammenhang die Geschwindigkeit beschreibt. Die Geschwindigkeitsänderung wiederum (also die zweite Ableitung) bezeichnet man als Beschleunigung.

Folgende Zusammenhänge kann man nun außerdem feststellen:

  • Wenn $f^{\prime\prime}(x)<0$ gilt, herrscht eine „negative Beschleunigung“ vor – es wird also gebremst und die Geschwindigkeit nimmt ab: $f^\prime (x)$ fällt.
  • Wenn $f^{\prime\prime}(x)>0$ gilt, herrscht eine „positive Beschleunigung“ vor – es wird also beschleunigt und die Geschwindigkeit nimmt zu: $f^\prime (x)$ steigt.
  • Wenn $f^{\prime\prime}(x)=0$ gilt, findet keine Beschleunigung statt und die Geschwindigkeit bleibt konstant: $f^{\prime\prime}(x)$ hat ein Maximum, Minimum oder einen Sattelpunkt, denn, wenn anschließend wieder beschleunigt wird, steigt die Geschwindigkeit über diesen Punkt hinaus. Wird anschließend wieder gebremst, fällt die Geschwindigkeit unter diesen Punkt ab.

Zweite Ableitung – Ausblick

Wenn du mehr darüber erfahren möchtest, welche Rolle die zweite Ableitung in der Mathematik spielt, Solltest du dich mit Wendepunkten auseinandersetzen. Potenzielle Wendestellen können berechnet werden, indem die zweite Ableitung gleich null gesetzt wird (notwendige Bedingung für einen Wendepunkt: $f^{\prime\prime}(x)=0$). Außerdem muss die dritte Ableitung ungleich null sein (hinreichende Bedingung für einen Wendepunkt: $f^{\prime\prime}(x)=0$ und $f^{\prime\prime\prime} (x) \neq 0$).

Zweite Ableitung – Zusammenfassung

  • An der zweiten Ableitung einer Funktion $f^{\prime\prime}(x)$ lässt sich das Krümmungsverhalten des Funktionsgraphen ablesen.
  • Für das Krümmungsverhalten von Funktionsgraphen gilt: $\newline f^{\prime\prime}(x)>0 \rightarrow f~ \text{ist linksgekrümmt} \newline f^{\prime\prime}(x)<0 \rightarrow f~ \text{ist rechtsgekrümmt}$
  • Wendepunkte sind die Punkte einer Funktion, an denen die Steigung maximal bzw. minimal ist.
Teste dein Wissen zum Thema Wendepunkt Zweite Ableitung!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Zweite Ableitung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Lerntext Zweite Ableitung kannst du es wiederholen und üben.
  • Tipps

    Bestimme zunächst die erste Ableitung. Den erhaltenen Term leitest du nochmal ab.

    Lösung

    $f(x)=10x^5-13x^3+4x+2$

    $f^{\prime}(x)=50x^4-39x^2+4$

    $f^{\prime\prime}(x)=200x^3-78x$

  • Tipps

    Die Steigung der Steigung ist die Änderung der Steigung.

    Lösung

    Die erste Ableitung gibt die Steigung der ursprünglichen Funktion an.

    Die Ableitung der Ableitung, also die zweite Ableitung, gibt die Steigung der Steigung bzw. die Krümmung der Funktion an.

    Für das Krümmungsverhalten der Funktion gilt:

    $f^{\prime\prime}(x)>0 \rightarrow f$ ist linksgekrümmt

    $f^{\prime\prime}(x)<0 \rightarrow f$ ist rechtsgekrümmt

  • Tipps

    Drei Aussagen sind richtig.

    Lösung

    Um die Wendepunkte zu bestimmen, geht man in drei Schritten vor.

    Zunächst muss man die erste Ableitung gleich null setzen. Die Lösungen dieser Gleichung sind die potenziellen Wendestellen.

    An den Wendestellen darf die dritte Ableitung nicht gleich null sein. Also setzt man die potenziellen Wendestellen in die dritte Ableitung ein und prüft, ob das Ergebnis ungleich null ist.

    Liegt ein Wendepunkt vor, muss noch die $y$-Koordinate bestimmt werden. Dazu setzt man die Wendestellen in die ursprüngliche Funktion ein.

  • Tipps

    $f''(x) = 6x - 12$

    Eine potenzielle Wendestelle liegt bei $x=2$.

    Lösung
    • Bilde zunächst die ersten drei Ableitungen:
    $f(x) = x^3 - 6x^2 + 12x - 5$

    $f'(x) = 3x^2 - 12x + 12$

    $f''(x) = 6x - 12$

    $f'''(x) = 6$

    • Setze dann die zweite Ableitung gleich Null und bestimme die Lösung:
    $f''(x) = 0 \implies 6x - 12=0 \implies x=2$

    • Setze die potenzielle Wendestelle in die dritte Ableitung ein:
    $f'''(2) = 6 \implies $ $f'''(2)\neq 0$

    Es liegt eine Wendestelle bei $x=2$ vor.

    • Bestimme die $y$-Koordinate durch Einsetzen in die ursprüngliche Funktion.
    $f(2) = 2^3 - 6\cdot 2^2 + 12\cdot 2 - 5=3$

    • Der Wendepunkt hat die Koordinaten $(2\vert 3)$.
  • Tipps

    Wenn du dir vorstellst, mit dem Fahrrad von $-\infty$ bis $+\infty$ auf dem Graphen zu fahren, ist der Wendepunkt der Punkt, an dem du den Lenker wendest, also über die Mitte von einer Seite auf die andere wechselst.

    Lösung

    Der Wendepunkt ist der Punkt, an dem dem der Graph der Funktion von einer Linkskrümmung in eine Rechtskrümmung übergeht oder andersherum.

  • Tipps

    Bilde die zweite Ableitung und prüfe, ob diese eine Nullstelle besitzt oder ob sie durchgängig das gleiche Vorzeichen hat.

    Wenn die zweite Ableitung null ist, liegt keine Krümmung vor.

    Lösung

    • $f(x)=x^2+3x-2$
    Die zweite Ableitung ist $f''(x)=2$, also ist die zweite Ableitung überall positiv und der Graph überall linksgekrümmt.

    Du kannst dir auch vorstellen, dass es sich um eine nach oben geöffnete Parabel handelt und wenn du diese mit dem Fahrrad abfährst, würdest du die ganze Zeit nach links lenken.

    • $f(x)=-3x^4$
    Die zweite Ableitung ist $f''(x)=-36x^2$, also ist die zweite Ableitung überall negativ und der Graph überall rechtsgekrümmt.

    Der Graph ist ähnlich wie eine Parabel geformt und nach unten geöffnet. Wenn du diesen Graphen mit dem Rad abfährst, musst du die ganze Zeit nach rechts lenken.

    • $f(x)=0,5x+7$
    Die zweite Ableitung ist $f''(x)=0$, also ist die Ableitung weder positiv noch negativ und der Graph hat keine Krümmung. Es handlet sich um eine Gerade. Würdest du diese mit dem Fahrrad abfahren, müsstest du gar nicht lenken.

    • $f(x)=x^3$
    Die zweite Ableitung ist $f''(x)=6x$, also ist die Ableitung mal positiv und mal negativ – je nachdem, welche Zahl man für $x$ einsetzt. Also ändert sich das Krümmungsverhalten. Der Wendepunkt liegt hier bei $(0\vert 0)$.

    Der Graph hat einen S-förmigen Verlauf und wollte man entlang des Graphen fahren, müsste man in verschiedene Richtungen lenken.

Bewertung

Ø 4.2 / 28 Bewertungen

Erfahrene Lehrkräfte erstellen und prüfen alle Inhalte bei sofatutor – für eine Qualität, auf die du dich verlassen kannst.

Avatar
sofatutor Team
Zweite Ableitung
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.460

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.245

Lernvideos

38.711

Übungen

33.574

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen