sofatutor 30 Tage
kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Satz von der totalen Wahrscheinlichkeit – Einführung 06:00 min

Textversion des Videos

Transkript Satz von der totalen Wahrscheinlichkeit – Einführung

Endlich! Der große Schulausflug steht an. Wohin es geht, bestimmt das Los! Alle Lehrer und Schüler dürfen aus zwei Vorschlägen ihr Lieblingsziel auswählen. Dafür werfen sie ein Los in eine Urne. Zur Wahl stehen dieses Mal: ein Besuch im Museum oder Lasertag! Wohin wird der Ausflug wohl gehen? Um die Wahrscheinlichkeiten für die beiden Ziele zu bestimmen, nutzen wir den Satz der totalen Wahrscheinlichkeit für zwei Ereignisse. Wenn wir einen Zettel aus der Urne ziehen, kann er entweder von einem Schüler...oder von einem Lehrer ausgefüllt worden sein. Und er ist entweder für das Museum oder für Lasertag. Die Wahrscheinlichkeit, dass ein zufällig gezogener Zettel zum Beispiel für das Museum ist, entspricht diesen beiden Pfaden in dem Baumdiagramm. Aber wie rechnen wir diese Wahrscheinlichkeit genau aus? Ersteinmal schreiben wir kurz S für das Ereignis "Schüler" und M für das Ereignis "Museum". Das Gegenereignis zum Ereignis Schüler bezeichnen wir mit nicht S. Ebenso bezeichnen wir das Gegenereignis zum Museum, als nicht M. An die Pfade des Baumdiagramms kommen die zugehörigen Wahrscheinlichkeiten. Die Wahrscheinlichkeit, dass ein zufällig gezogener Zettel von einem Schüler kommt, ist P von S. Aber was gehört an diesen Pfad? Wenn wir dem ganzen Pfad folgen, ist es klar: Das ist die bedingte Wahrscheinlichkeit P von M unter der Bedingung S, also die Wahrscheinlichkeit, dass ein Zettel für das Museum von einem Schüler stammt. Die übrigen Pfade beschriften wir nach dem gleichen Muster. Wie wahrscheinlich es ist, dass wir einen Zettel ziehen, der von einem Schüler stammt, und der für den Museumsbesuch stimmt, können wir mit der ersten Pfadregel ausrechnen, indem wir die Wahrscheinlichkeiten entlang des Pfades multiplizieren. Die Wahrscheinlichkeit von S UND M ist dann also gleich der Wahrscheinlichkeit von S...mal der bedingten Wahrscheinlichkeit von M unter der Bedingung S. Ebenso können wir die Wahrscheinlichkeiten der anderen Pfade berechnen. Und wie wahrscheinlich ist es nun insgesamt, dass wir M ziehen? Dafür brauchen wir die zweite Pfadregel: wir addieren also diese beiden Pfadwahrscheinlichkeiten. Moment mal - wieso geht das eigentlich? Wir betrachten zunächst ein Venndiagramm, um zu identifizieren, woraus sich das Ereignis M zusammensetzt. Wo überall finden wir das Ereignis M? Ein Teil von M liegt in S und ein Teil nicht in S. Deshalb setzt sich P von M zusammen aus... der Schnittmenge von S und M, P von "S und M" sowie der Schnittmenge von nicht S und M, P von "nicht-S und M". Findest du diese Wahrscheinlichkeiten in dem Baumdiagramm? Zu P von S und M gehört dieser Pfad...und zu P von nicht S und M dieser. Wichtig ist, immer alle Pfade zu finden, die im gesuchten Ereignis, bei uns also M, enden. P von "S und M" haben wir bereits mit der ersten Pfadregel bestimmt. Ebenso können wir P von "nicht-S und M" bestimmen. Wenn wir die beiden Ausdrücke durch die Produkte ersetzen, erhalten wir die totale Wahrscheinlichkeit für P von M. Um eine Prognose für das Ausflugsziel abgeben zu können, fehlen uns noch die Wahrscheinlichkeiten entlang der Pfade. Wir nehmen an, die Wahrscheinlichkeit, dass ein zufällig gezogener Zettel von einem Schüler stammt, beträgt 97% Wir schreiben das als Dezimalzahl 0,97. Es ist ziemlich wahrscheinlich, dass ein Schüler nicht für den Museumsbesuch ist - sagen wir 70%. Bei den Lehrern ist es wohl ausgeglichener. 56% der Lehrer wollen ins Museum. Die Pfade zu den Gegenereignissen können wir, so wie hier, über die Gegenwahrscheinlichkeiten berechnen. Genauso können wir die noch fehlenden Wahrscheinlichkeiten angeben. Wohin wird der Ausflug denn nun vermutlich gehen? Wir berechnen die Wahrscheinlichkeit für den Museumsbesuch. Die Wahrscheinlichkeiten übernehmen wir aus dem Baumdiagramm und damit ist P von M rund 0,308, also 30,8 %. Es ist also nicht sehr wahrscheinlich, dass der Ausflug ins Museum geht. Ein Glück! Während die Schüler und Lehrer Loszettel einwerfen, fassen wir nochmal zusammen. Zur Berechnung der totalen Wahrscheinlichkeit von zwei Ereignissen zeichnet man zunächst ein Baumdiagramm und identifiziert alle Pfade, die in dem gesuchten Ereignis enden. Dann berechnen wir die Wahrscheinlichkeiten der einzelnen Pfade mit Hilfe der ersten Pfadregel und addieren die beiden Pfadwahrscheinlichkeiten. Als Ausflugsziel wurde auch tatsächlich Lasertag gezogen! Aber was ist das? Ein Lasertag Museum?!

Satz von der totalen Wahrscheinlichkeit – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Satz von der totalen Wahrscheinlichkeit – Einführung kannst du es wiederholen und üben.

  • Definiere die erste und zweite Pfadregel sowie die Gegenwahrscheinlichkeit.

    Tipps

    Hier abgebildet ist ein Baumdiagramm mit den Wahrscheinlichkeiten der jeweiligen Elementarereignisse. Diese resultieren aus der 1. Pfadregel.

    Die Wahrscheinlichkeit, eine grüne Kugel zu ziehen, entspricht $\frac 35$. Die Wahrscheinlichkeit, eine orange Kugel zu ziehen, entspricht $\frac 25$.

    Diese ist die Gegenwahrscheinlichkeit zu $\frac 35$.

    Lösung

    Wenn wir einen Zettel aus der Urne ziehen, kann dieser entweder von einem Schüler ($S$) oder von einem Lehrer ($\overline S$) ausgefüllt worden sein. Zudem wählt jede Person das Museum $(M$) oder Lasertag ($\overline M$).

    Die Wahrscheinlichkeit, dass ein zufällig gezogener Zettel für das Museum ist, entspricht den beiden hier abgebildeten Pfaden.

    Betrachten wir nun beide Pfade getrennt voneinander. Zunächst möchten wir wissen, wie wahrscheinlich es ist, dass der Zettel von einem Schüler und für das Museum ist.

    Wir suchen also die Wahrscheinlichkeit für das Elementarereignis $P(S\cap M)$. Diese resultiert aus der 1. Pfadregel nämlich aus der Multiplikation der Wahrscheinlichkeiten des zugehörigen Pfades:

    $P(S)\cdot P(M\vert S)$

    Die Wahrscheinlichkeit $P(M\vert S)$ wird als bedingte Wahrscheinlichkeit bezeichnet. Sie entspricht der Wahrscheinlichkeit von $M$ unter der Voraussetzung, dass $S$ eingetreten ist.

    Die Wahrscheinlichkeit dafür, dass der gezogene Zettel von einem Lehrer stammt und für das Museum stimmt, erhalten wir ebenfalls mit der 1. Pfadregel. Es gilt $P(\overline S)\cdot P(M\vert \overline S)$.

    Hierbei ist $\overline S$ das Gegenereignis zu dem Ereignis $S$ und steht für den Lehrer. Die Wahrscheinlichkeit eines Gegenereignisses wird Gegenwahrscheinlichkeit genannt und wie folgt berechnet:

    $P(\overline S)=1-P(S)$.

    Nun können wir unter Verwendung der 2. Pfadregel die Wahrscheinlichkeit dafür berechnen, dass der gezogene Zettel für das Museum stimmt. Dazu addieren wir die beiden Wahrscheinlichkeiten, die wir aus der 1. Pfadregel erhalten haben. Es folgt dann der Satz der totalen Wahrscheinlichkeit für zwei Ereignisse:

    $P(M)=P(S)\cdot P(M\vert S)+P(\overline S)\cdot P(M\vert \overline S)$.

  • Bestimme die Wahrscheinlichkeiten $P(M)$ und $P(\overline M)$.

    Tipps

    Die Gegenwahrscheinlichkeit der Wahrscheinlichkeit $P(S)$ kannst du wie folgt bestimmen:

    $P(\overline S)=1-P(S)$

    Der Satz der totalen Wahrscheinlichkeit lautet:

    $ \begin{array}{llccc} P(M) &=& P(S\cap M) &+& P(\overline S\cap M)\\ &=& P(S)\cdot P(M\vert S) &+& P(\overline S)\cdot P(M\vert \overline S) \end{array} $

    Lösung

    Für die Berechnung der Wahrscheinlichkeiten $P(M)$ und $P(\overline M)$ verwenden wir den Satz der totalen Wahrscheinlichkeit:

    $ \begin{array}{lll} P(M) &=& P(S\cap M) + P(\overline S\cap M) \\ P(\overline M) &=& P(S\cap \overline M) + P(\overline S\cap \overline M) \end{array} $

    Dieser resultiert aus der zweiten Pfadregel. Die hier enthaltenen Summanden erhalten wir aus der ersten Pfadregel. Es folgt dann:

    $ \begin{array}{lll} P(M) &=& P(S)\cdot P(M\vert S) &+& P(\overline S)\cdot P(M\vert \overline S) \\ P(\overline M) &=& P(S)\cdot P(\overline M\vert S) &+& P(\overline S)\cdot P(\overline M\vert \overline S) \end{array} $

    Jedoch fehlen uns für die Berechnung der Wahrscheinlichkeiten $P(M)$ und $P(\overline M)$ noch Wahrscheinlichkeiten an einigen Pfaden. Diese erhalten wir über die jeweiligen Gegenwahrscheinlichkeiten:

    $ \begin{array}{lllll} P(\overline S) &=& 1-P(S) &=& 1-0,97 &=& 0,03\\ P(M\vert S) &=& 1-P(\overline M\vert S) &=& 1-0,7 &=& 0,3\\ P(\overline M\vert\overline S) &=& 1-P(M\vert\overline S) &=& 1-0,56 &=& 0,44 \end{array} $

    Nun können wir die Summanden für den Satz der totalen Wahrscheinlichkeit bestimmen:

    $ \begin{array}{lllllll} P(S\cap M) &=& P(S)\cdot P(M\vert S) &=& 0,97\cdot 0,3 &=& 0,291\\ P(S\cap \overline M) &=& P(S)\cdot P(\overline M\vert S) &=& 0,97\cdot 0,7 &=& 0,679\\ P(\overline S\cap M) &=& P(\overline S)\cdot P(M\vert \overline S) &=& 0,03\cdot 0,56 &\approx & 0,017\\ P(\overline S\cap \overline M) &=& P(\overline S)\cdot P(\overline M\vert \overline S) &=& 0,03\cdot 0,44 &\approx & 0,013 \end{array} $

    Nun können wir die Wahrscheinlichkeiten $P(M)$ und $P(\overline M)$ berechnen:

    $ \begin{array}{lll} P(M) &=& P(S\cap M) + P(\overline S\cap M) &=& 0,291+0,017 &=& 0,308\\ P(\overline M) &=& P(S\cap \overline M) + P(\overline S\cap \overline M) &=& 0,679+0,013 &=& 0,692 \end{array} $

  • Ermittle die gesuchten Wahrscheinlichkeiten.

    Tipps

    1. Pfadregel

    Die Wahrscheinlichkeit eines Elementarereignisses resultiert aus der Multiplikation der Wahrscheinlichkeiten des zugehörigen Pfades.

    Demnach gilt bspw. $P(b,b)=\frac 58 \cdot \frac 47$.

    2. Pfadregel

    Die Wahrscheinlichkeit eines Ereignisses resultiert aus der Addition der Wahrscheinlichkeiten der Pfade, welche zu diesem Ereignis führen.

    Demnach gilt bspw. $P(\{b,b\},\{b,r\})=P(\{b,b\})+P(\{b,r\})$.

    Lösung

    Zunächst überlegen wir, wie sich die gegebenen Ereignisse zusammensetzen.

    $ \begin{array}{llllll} \\ A: & \text{Mindestens eine rote Kugel wird gezogen.} && \rightarrow && A=\{\{b,r\},\{r,b\},\{r,r\}\} \\ B: & \text{Mindestens eine blaue Kugel wird gezogen.} && \rightarrow && B=\{\{b,b\},\{b,r\},\{r,b\}\} \\ C: & \text{Es wird keine rote Kugel gezogen.} && \rightarrow && C=\{b,b\} \\ D: & \text{Es wird genau eine blaue Kugel gezogen.} && \rightarrow && D=\{\{b,r\},\{r,b\}\} \\ \\ \end{array} $

    Nun können wir unter Verwendung der ersten Pfadregel alle Elementarereignisse berechnen. Wir erhalten dann:

    $ \begin{array}{llll} P(\{b,b\}) & \frac 58\cdot\frac 47 &=& \frac 5{14} \\ P(\{b,r\}) & \frac 58\cdot\frac 37 &=& \frac {15}{56} \\ P(\{r,b\}) & \frac 38\cdot\frac 57 &=& \frac {15}{56} \\ P(\{r,r\}) & \frac 38\cdot\frac 27 &=& \frac 3{28} \end{array} $

    Jetzt können wir die Wahrscheinlichkeiten der gegebenen Ereignisse bestimmen. Hierzu wenden wir die zweite Pfadregel an:

    $ \begin{array}{llllll} P(A) &=& P(\{b,r\},\{r,b\},\{r,r\}) &=& \frac {15}{56}+ \frac {15}{56}+\frac 3{28} &=& \frac 9{14} \\ P(B) &=& P(\{b,b\},\{b,r\},\{r,b\}) &=& \frac 5{14}+ \frac {15}{56}+ \frac {15}{56} &=& \frac{25}{28} \\ P(C) &=& P(\{b,b\}) &=& \frac 5{14} && \\ P(D) &=& P(\{b,r\},\{r,b\}) &=& \frac {15}{56}+ \frac {15}{56} &=& \frac {15}{28} \end{array} $

  • Bestimme die totale Wahrscheinlichkeit.

    Tipps

    Erstelle dir ein Baumdiagramm und beschrifte die Pfade mit den jeweiligen Wahrscheinlichkeiten. Verwende hierzu Dezimalzahlen, sodass du ohne Prozentzeichen rechnen kannst. Es gilt zum Beispiel:

    $15\%=\frac {15}{100}=0,15$.

    Beachte, dass du das Ergebnis dann wieder in Prozent umrechnen musst.

    $\overline A$ ist das Gegenereignis zu $A$. Die Gegenwahrscheinlichkeit erhältst du über $P(\overline A)=1-P(A)$.

    Der Satz der totalen Wahrscheinlichkeit für zwei Ereignisse $A$ und $B$ lautet allgemein:

    $P(B)=P(A\cap B)+P(\overline A\cap B)$.

    Laut der 1. Pfadregel gilt:

    $P(A\cap B)=P(A)\cdot P(B\vert A)$.

    Lösung

    Folgende Angaben sind uns bekannt:

    • Gruppe $C$ entspricht $65\%$ der Gesamtschüler
    • Gruppe $C$ stimmt mit $55\%$ für Lena
    • Gruppe $\overline C$ stimmt mit $70\%$ für Lena
    Diese liefern uns folgende Wahrscheinlichkeiten:

    • $P(C)=0,65$
    • $P(L\vert C)=0,55$
    • $P(L\vert \overline C)=0,7$
    Die fehlenden Wahrscheinlichkeiten erhalten wir über die jeweilige Gegenwahrscheinlichkeit:

    • $P(\overline C)=1-0,65=0,35$
    • $P(\overline L\vert C)=1-0,55=0,45$
    • $P(\overline L\vert \overline C)=1-0,7=0,3$
    Das zutreffende Baumdiagramm ist hier abgebildet. Nun können wir die gesuchte Wahrscheinlichkeit $P(L)$ berechnen:

    $P(L)=P(C\cap L)+P(\overline C\cap L)=0,65\cdot 0,55+0,35\cdot 0,7=0,6025=60,25\%$

  • Ergänze das gegebene Baumdiagramm.

    Tipps

    Die fehlenden Wahrscheinlichkeiten entsprechen den Wahrscheinlichkeiten der jeweiligen Gegenereignisse.

    Die Wahrscheinlichkeit eines Gegenereignisses ist die sogenannte Gegenwahrscheinlichkeit. Sie wird wie folgt bestimmt:

    $P(\overline S)=1-P(S)$

    Die Gegenwahrscheinlichkeit zu $P(M\vert S)$ ist $P(\overline M\vert S)$.

    Lösung

    Hier dargestellt ist das vollständige Baumdiagramm. Die fehlenden Wahrscheinlichkeiten entsprechen den Wahrscheinlichkeiten der jeweiligen Gegenereignisse.

    Die Wahrscheinlichkeit eines Gegenereignisses ist die sogenannte Gegenwahrscheinlichkeit. Wir erhalten diese wie folgt:

    $ \begin{array}{lllll} P(\overline S) &=& 1-P(S) &=& 1-0,97 &=& 0,03\\ P(M\vert S) &=& 1-P(\overline M\vert S) &=& 1-0,7 &=& 0,3\\ P(\overline M\vert\overline S) &=& 1-P(M\vert\overline S) &=& 1-0,56 &=& 0,44 \end{array} $

  • Ermittle die bedingte Wahrscheinlichkeit.

    Tipps

    Die 1. Pfadregel besagt, dass die Wahrscheinlichkeit eines Elementarereignisses aus der Multiplikation der Wahrscheinlichkeiten des zugehörigen Pfades resultiert.

    Beachte, dass die Wahrscheinlichkeiten nicht in Prozent gefragt sind.

    Lösung

    Folgende Angaben sind uns bekannt:

    • An Station $A$ haben sich $25\%$ der Schüler versammelt.
    • Mit einer Wahrscheinlichkeit von $11,25\%$ ist ein Schüler an Station $A$ UND nimmt den Doppeldecker $D$.
    Demnach kennen wir also folgende Größen:

    • $P(A)= 0,25$
    • $P(A\cap D)= 0,1125$
    Durch Umstellen der 1. Pfadregel erhalten wir eine Formel für die Berechnung der bedingten Wahrscheinlichkeit:

    $ \begin{array}{lllll} P(A\cap D) &=& P(A)\cdot P(D\vert A) && \vert :P(A) \\ \frac{P(A\cap D)}{P(A)} &=& P(D\vert A) && \end{array} $

    Wir setzen ein und es folgt die Lösung:

    $P(D\vert A)=\frac{0,1125}{0,25}=0,45$.