Schulausfall:
sofatutor 30 Tage kostenlos nutzen

Videos & Übungen für alle Fächer & Klassenstufen

Bruchgleichungen lösen – Überblick 06:45 min

Textversion des Videos

Transkript Bruchgleichungen lösen – Überblick

Nichts ist so spannend, wie völlig verschiedene Dinge zu mischen. Der Mixer versucht sich heute an Gleichungen und Brüchen. Was wird dabei wohl rauskommen?

Eine Bruchgleichung! Und wir schauen uns jetzt an, wie man Bruchgleichungen lösen kann. Wenn in einer Gleichung eine Variable im Nenner eines Bruches vorkommt, nennt man diese Gleichung Bruchgleichung. Beim Lösen einer Bruchgleichung spielen einige Mengen eine wichtige Rolle. Man nennt die Menge aller Zahlen, die uns überhaupt zur Verfügung stehen, die GRUNDMENGE. Meistens bekommst du die Grundmenge in der Aufgabe vorgegeben, wir verwenden hier die rationalen Zahlen Q. Nicht alle Zahlen aus der Grundmenge dürfen aber in die Gleichung eingesetzt werden. Weil die Variable im Nenner steht, musst du aufpassen, dass der Nenner nicht 0 wird – dann würdest du ja durch 0 teilen, und das geht bekanntlich nicht! Welche Werte lassen einen der Nenner gleich 0 werden? Das sind hier die 0 und hier die 2. Alle anderen Zahlen aus der Grundmenge darfst du problemlos in die Gleichung einsetzen. In unserem Beispiel müssen wir daher die Werte 0 und 2 ausschließen. Wir haben somit die Definitionsmenge D gleich Q OHNE 0 und 2. Die Definitionsmenge enthält also alle Zahlen, die du in die Gleichung einsetzen darfst. Jetzt können wir also endlich die Lösungsmenge bestimmen. Dafür stehen uns verschiedene Methoden zur Auswahl. Das erste Verfahren beruht darauf, die Brüche auf einen Hauptnenner zu bringen. Diese Methode funktioniert immer. Zuerst sorgen wir durch Äquivalenzumformungen dafür, dass auf einer Seite der Gleichung eine 0 steht. Dann bringen wir die Brüche auf ihren Hauptnenner, indem wir jeden Bruchterm mit dem Nenner des jeweils anderen erweitern. Nun können wir die Brüche zusammenfassen. Als nächstes multiplizieren wir die Klammern im Zähler aus stellen um und vereinfachen. Ein Bruch ist genau dann gleich 0, wenn sein Zähler 0 ist. Also müssen wir nur den Zähler betrachten und finden x gleich 10. Ist die 10 in unserer Definitionsmenge enthalten? JA, denn 10 ist weder 0 noch 2. Unsere Lösungsmenge - also die Menge aller Lösungen, die unsere Bruchgleichung erfüllen - besteht somit aus der 10. Die zweite Variante, wie du diese Bruchgleichung lösen kannst, ist das Multiplizieren über Kreuz. Bei dieser Methode wird der Zähler des ersten Bruchs mit dem Nenner des zweiten Bruchs multipliziert und dann wird der Zähler des zweiten Bruchs mit dem Nenner des ersten Bruchs multipliziert. Anschließend stellen wir die Gleichung wieder mittels Äquivalenzumformungen um lösen nach x auf und wir erhalten x=10. Diese Methode bietet sich besonders dann an, wenn auf beiden Seiten der Bruchgleichung je EIN Bruchterm vorhanden ist. Weil wir nur einen anderen Weg zum Lösen gewählt haben, ist die Definitionsmenge dieselbe wie zuvor und deshalb erhalten wir auch dieselbe Lösungsmenge. Ein drittes Verfahren für das Lösen einer Bruchgleichung ist die Kehrwertbildung. Die funktioniert immer nur dann, wenn keine der Seiten gleich 0 ist und im Zähler keine Variablen stehen — dafür führt sie oft besonders schnell zur Lösung. Wenn zwei Brüche gleich sind, sind auch die Kehrwerte gleich. Schauen wir uns das an einem Zahlenbeispiel an: Die beiden Brüche ein halb und zwei viertel sind gleich. Bilden wir auf beiden Seiten der Gleichung den jeweiligen Kehrwert, dann erhalten wir zwei Eintel gleich vier Halbe — das stimmt auch. Wir können also auch in unserer Bruchgleichung auf beiden Seiten je den Kehrwert bilden, ohne die Lösungsmenge unserer Gleichung zu verändern. Zunächst multiplizieren wir mit den übrigen Nennern über Kreuz. Anschließend vereinfachen wir die erhaltene Gleichung und stellen sie mit den jeweiligen Umkehroperationen nach x um. Wir finden wieder x gleich 10. Und auch mit diesem Verfahren und der gleichen Definitionsmenge gelangen wir zur selben Lösungsmenge wie vorhin. Wie du gesehen hast, liefern alle drei Methoden dieselbe Lösung. Schauen wir uns doch noch einmal an, wie wir beim Lösen unserer Bruchgleichung vorgegangen sind. Im ersten Schritt haben wir unsere Definitionsmenge bestimmt. Anschließend haben wir mittels dreier unterschiedlicher Methoden die Lösung der Gleichung ermittelt. Die erste Methode basiert auf dem Hauptnenner. Dabei bringst du alle Bruchterme auf ihren Hauptnenner. Das ist die einzige Methode, die immer funktioniert. Die zweite Methode ist das Multiplizieren über Kreuz. Hierfür darf auf beiden Seiten der Gleichung nur je ein Bruchterm stehen. Genauso ist es auch bei der dritten Methode, nämlich der Kehrwertbildung. Bei dieser Methode musst du auch darauf achten, dass keine der Seiten der Gleichung 0 ist. Wenn der ermittelte Wert für x in der Definitionsmenge enthalten ist, ist er unsere Lösung. Aber warum haben wir das jedes mal überprüft? Es hat doch immer super funktioniert? Schauen wir uns hierfür diese Bruchgleichung an. Um eine Division durch Null zu vermeiden, darf x den Wert 2 nie annehmen. Somit ist unsere Definitionsmenge gleich "Q ohne 2". Was ist aber die Lösung der Gleichung? Die Bruchterme auf den beiden Seiten der Gleichung haben identische Nenner, also müssen auch die Zähler gleich sein, damit die Gleichung erfüllt ist. Die Zähler sind gleich, wenn x gleich 2 ist. Doch die 2 liegt nicht in unserer Definitionsmenge! Somit ist die Lösungsmenge dieser Bruchgleichung leer. Ob wir dem Mixer und seinen Mischversuchen damit helfen konnten? Oh oh — das mit der Definitionsmenge hat er wohl noch nicht so richtig verstanden! Und DAS kommt eben dabei raus, wenn man durch 0 teilt.

11 Kommentare
  1. Hallo Michael W.,

    bitte beschreibe genauer, was du nicht verstanden hast. Gib beispielsweise die konkrete Stelle im Video mit Minuten und Sekunden an. Gerne kannst du dich auch an den Fach-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können.

    Liebe Grüße aus der Redaktion

    Von Cansu Ayguezel, vor 23 Tagen
  2. etwas unverständlich

    Von Michael W., vor 24 Tagen
  3. Hallo Gerlinde Bodamer,

    bitte beschreibe genauer, welche Stelle du meinst. Gib beispielsweise die konkrete Stelle im Video mit Minuten und Sekunden an. Gerne kannst du dich auch an den Fach-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können.
    Liebe Grüße aus der Redaktion

    Von Cansu Ayguezel, vor 26 Tagen
  4. wieso kommt da minus 8mal x wen die zahl positiv ist

    Von Gerlinde Bodamer, vor 28 Tagen
  5. sehr sehr gutes video :)))))

    Von Simone Schillo, vor 5 Monaten
Mehr Kommentare

Bruchgleichungen lösen – Überblick Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Bruchgleichungen lösen – Überblick kannst du es wiederholen und üben.

  • Beschreibe, wie du beim Lösen einer Bruchgleichung mittels der Hauptnenner-Methode vorgehst.

    Tipps

    Wenn du eine Bruchgleichung lösen möchtest, indem du alle Bruchterme auf einen gemeinsamen Nenner bringst, so musst du die Bruchgleichung zunächst so umstellen, dass auf einer Seite der Gleichung eine $\mathbf{0}$ steht.

    Schau dir folgendes Beispiel an.

    $ \begin{array}{lllll} \frac{10}{x} &=& \frac{8}{x-1} && \vert - \frac{8}{x-1} \\ \frac{10}{x}-\frac{8}{x-1} &=& 0 && \vert\ \text{Hauptnenner} \\ \frac{10\cdot (x-1)}{x\cdot (x-1)}-\frac{8\cdot x}{(x-1)\cdot x} &=& 0 && \vert\ \text{vereinfachen}\\ \frac{2x-10}{x(x-1)} &=& 0 && \end{array} $

    Ein Bruch der Form $\frac{2x-10}{x(x-1)}$ ist genau dann null, wenn sein Zähler gleich null ist.

    $ \begin{array}{lllll} 2x-10 &=& 0 && \vert +10 \\ 2x &=& 10 && \vert :2 \\ x &=& 5 && \end{array} $

    Lösung

    Wenn in einer Gleichung eine Variable im Nenner eines Bruches vorkommt, nennt man diese Gleichung Bruchgleichung. In dieser Aufgabe ist uns die Bruchgleichung $\frac {10}{x} = \frac {8}{x-2}$ gegeben. Diese möchten wir nun mit der Hauptnenner-Methode lösen.

    Beim Lösen einer Bruchgleichung spielen einige Mengen eine wichtige Rolle. Die Menge aller Zahlen, die uns überhaupt zur Verfügung stehen, nennen wir die Grundmenge. Diese bekommst du meistens in der Aufgabe vorgegeben. Hier verwenden wir die rationalen Zahlen $\mathbb{Q}$. ABER nicht alle Zahlen aus der Grundmenge dürfen auch in die Gleichung eingesetzt werden. Daher gehen wir beim Lösen der Bruchgleichung wie folgt vor.

    • Welche Werte aus der Grundmenge lassen einen Nenner gleich $0$ werden? Mit dieser Frage legen wir zunächst die Definitionsmenge fest. Hierzu bestimmen wir alle diejenigen Werte, für welche je einer der beiden Nenner gleich null ist. Wir erhalten dann $\mathbb D = \mathbb Q \setminus \{0;2\}$. Alle anderen Zahlen aus der Grundmenge darfst du problemlos in die Gleichung einsetzen.
    • Nun stellen wir die Bruchgleichung durch Äquivalenzumformungen so um, dass auf einer Seite der Gleichung eine $\mathbf{0}$ steht, und erhalten $\frac {10}x-\frac{8}{x-2}=0$.
    • Dann bringen wir die Brüche auf ihren Hauptnenner, indem wir jeden Bruchterm mit dem Nenner des jeweils anderen erweitern. Wir erhalten $\frac {10 \cdot (x-2)}{x \cdot (x-2)} - \frac {8 \cdot x}{x \cdot (x-2)} = 0$.
    • Nun können wir die Brüche zusammenfassen, die Klammern im Zähler ausmultiplizieren und den Zähler vereinfachen. So erhalten wir die Bruchgleichung $\frac{2 \cdot x-20}{x \cdot (x-2)}=0$.
    • Ein Bruch ist genau dann gleich $\mathbf{0}$, wenn sein Zähler $\mathbf{0}$ ist. Wir rechnen also $2\cdot x-20=0$ und erhalten $x=10$.
    • Ist die $10$ in unserer Definitionsmenge enthalten? Ja, denn die $10$ ist weder $0$ noch $2$. Unsere Lösungsmenge ist also $\mathbb L = \{10\}$.
  • Bestimme die jeweilige zum Lösen der Bruchgleichung verwendete Methode.

    Tipps

    Zum Addieren oder Subtrahieren zweier Brüche müssen diese zunächst auf den gemeinsamen Hauptnenner erweitert werden.

    Im Folgenden siehst du eine Multiplikation über Kreuz:

    $\begin{array}{lll} \frac 1x &=& \frac 15 \\ 1\cdot 5 &=& 1\cdot x \end{array} $

    Der Kehrwert eines Bruches $\frac ab$ entspricht $\frac ba$.

    Lösung

    Die vom Mixer kreierte Bruchgleichung $\frac {10}{x} = \frac {8}{x-2}$ kann mit den folgenden Methoden gelöst werden:

    • Methode der Erweiterung auf den Hauptnenner,
    • Methode der Multiplikation über Kreuz und
    • Methode der Kehrwertbildung.
    In dieser Aufgabe wurde diese Bruchgleichung drei Mal mit je einer der oben aufgeführten Methoden gelöst. Gemeinsam werden wir nun diese Rechnungen bezüglich der angewendeten Methode untersuchen.

    Rechnung 1

    $ \begin{array}{lll} \frac {10}{x} &=& \frac {8}{x-2} \\ 10(x-2) &=& 8x \\ 2x &=& 20 \\ x &=& 10 \end{array} $

    In dieser Rechnung erkennen wir gleich im ersten Rechenschritt, dass über Kreuz multipliziert wurde, um die Bruchterme aufzulösen. Es wurde hier also die Methode der Multiplikation über Kreuz genutzt.

    Rechnung 2

    $ \begin{array}{lll} \frac {10}{x} &=& \frac {8}{x-2} \\ \frac {10}{x}-\frac {8}{x-2} &=& 0 \\ \frac {10(x-2)-8x}{x(x-2)} &=& 0 \\ 2x-20 &=& 0 \\ 2x &=& 20 \\ x &=& 10 \end{array} $

    Hier wird im ersten Rechenschritt die Bruchgleichung so umgeformt, dass auf der rechten Seite der Gleichung eine null steht. Die Form der Gleichung erinnert uns gleich an die Methode des Hauptnenners. Im zweiten Rechenschritt sehen wir dann auch bereits, dass die Methode der Erweiterung auf den Hauptnenner genutzt wird.

    Rechnung 3

    $ \begin{array}{lll} \frac {10}{x} &=& \frac {8}{x-2} \\ \frac {x}{10} &=& \frac {x-2}{8} \\ \frac 1{10}x &=& \frac 18(x-2) \\ \frac 1{10}x-\frac 18x &=& -\frac 14 \\ -\frac 1{40}x &=& -\frac 14 \\ x &=& 10 \end{array} $

    Gleich im ersten Rechenschritt erkennen wir die Methode der Kehrwertbildung. Dadurch steht die Variable der Gleichung nicht mehr im Nenner und die resultierende Gleichung kann durch Äquivalenzumformungen gelöst werden.

  • Ermittle die Definitionsmenge der gegebenen Bruchgleichungen.

    Tipps

    Die Definitionsmengen der gegebenen Bruchgleichungen werden durch die Nullstellen der Nenner eingeschränkt.

    Die Nullstelle eines Nenners erhältst du, indem du den Nennerterm gleich null setzt. Schau dir folgendes Beispiel an.

    • $\frac{1}{x-1}=\frac{2}{3x-7}$
    Nullstellen der Nennerterme
    • $x-1=0~\rightarrow~x=1$
    • $3x-7=0~\rightarrow~x=\frac 73$

    Lösung

    Nicht immer dürfen alle Zahlen aus der Grundmenge in eine Gleichung eingesetzt werden. Für welche Zahlen eine Gleichung nicht definiert ist, gibt die Definitionsmenge dieser Gleichung an. Diese schließt nämlich alle diejenigen Zahlen aus der Grundmenge aus, welche die Variable der Gleichung nicht annehmen darf.

    Die Definitionsmengen der gegebenen Bruchgleichungen werden durch die Nullstellen der Nenner eingeschränkt. $x$ darf nämlich keinen Wert annehmen, für den der Nenner null wird, denn dann würdest du ja durch $0$ teilen und das geht bekanntlich nicht!

    Die Nullstelle eines Nenners erhalten wir, indem wir den Nennerterm gleich null setzen. Also berechnen wir im Folgenden diese Nullstellen.

    Beispiel 1: $~\frac{10}{x}=\frac{8}{x-1}$

    • $x=0$
    • $x-1=0~\rightarrow~x=1$
    Die Definitionsmenge lautet somit $\mathbb{D}=\mathbb{Q}\setminus\{0;\ 1\}$.

    Beispiel 2: $~\frac {3}x-\frac {1}{x-4}=0$

    • $x=0$
    • $x-4=0~\rightarrow~x=4$
    Die Definitionsmenge lautet somit $\mathbb{D}=\mathbb{Q}\setminus\{0;\ 4\}$.

    Beispiel 3: $~\frac{9}{x+2}=\frac{7}{x}$

    • $x+2=0~\rightarrow~x=-2$
    • $x=0$
    Die Definitionsmenge lautet somit $\mathbb{D}=\mathbb{Q}\setminus\{0;\ -2\}$.

    Beispiel 4: $~\frac{21}{2x-3}=\frac{15}{x}$

    • $2x-3=0~\rightarrow~x=\frac 32=1,5$
    • $x=0$
    Die Definitionsmenge lautet somit $\mathbb{D}=\mathbb{Q}\setminus\{0;\ 1,5\}$.

  • Bestimme die Lösungsmenge der gegebenen Bruchgleichungen.

    Tipps

    Vier der fünf Bruchgleichungen lassen sich mittels der Methode der Über-Kreuz-Multiplikation lösen.

    Hierzu multiplizierst du den Zähler des ersten Bruchs mit dem Nenner des zweiten Bruchs und dann den Zähler des zweiten Bruchs mit dem Nenner des ersten Bruchs. Anschließend stellst du die Gleichung wieder mittels Äquivalenzumformungen um.

    Haben beide Bruchterme einer Bruchgleichung bereits denselben Nenner, so kannst du die Gleichung per Äquivalenzumformung nach der Variablen auflösen.

    Du musst die Definitionsmengen der Bruchgleichungen beachten. Ist ein Wert in der Definitionsmenge nicht enthalten, so kann dieser nicht die Lösung der Gleichung sein.

    Nimm dir Stift und Zettel zur Hilfe. Handschriftlich klappt diese Aufgabe noch besser!

    Lösung

    Beim Lösen der Bruchgleichungen gehen wir wie folgt vor.

    1. Definitionsmenge bestimmen
    2. Bruchgleichung mittels einer der drei Methoden lösen
    3. Überprüfen, ob Lösung in der Definitionsmenge enthalten ist
    4. Lösungsmenge angeben
    Nun führen wir diese Schritte an unseren fünf Beispielen aus.

    Beispiel 1: $~\frac{10}{x}=\frac{8}{x-1}$

    • $\mathbb{D}=\mathbb{Q}\setminus\{0;\ 1\}$
    • Lösung der Gleichung mittels Methode der Über-Kreuz-Multiplikation
    $ \begin{array}{llll} & \frac{10}{x} &=& \frac{8}{x-1} \\ & 10(x-1) &=& 8x \\ & 10x-10 &=& 8x \\ & 2x &=& 10 \\ & x &=& 5 \end{array} $

    • Diese Lösung ist in der Definitionsmenge $\mathbb{D}$ enthalten.
    • Die Lösungsmenge lautet $\mathbb{L}=\{5\}$.
    Beispiel 2: $~\frac {3}x-\frac {1}{x-4}=0$

    • $\mathbb{D}=\mathbb{Q}\setminus\{0;\ 4\}$
    • Gleichung umstellen und dann mittels Methode der Über-Kreuz-Multiplikation lösen.
    $ \begin{array}{llll} & \frac {3}x-\frac {1}{x-4} &=& 0\\ & \frac {3}x &=& \frac {1}{x-4} \\ & 3(x-4) &=& x \\ & 3x-12 &=& x \\ & 2x &=& 12 \\ & x &=& 6 \end{array} $

    • Diese Lösung ist in der Definitionsmenge $\mathbb{D}$ enthalten.
    • Die Lösungsmenge lautet $\mathbb{L}=\{6\}$.
    Beispiel 3: $~\frac{9}{x+2}=\frac{7}{x}$

    • $\mathbb{D}=\mathbb{Q}\setminus\{0;\ -2\}$
    • Gleichung mittels Methode der Über-Kreuz-Multiplikation lösen.
    $ \begin{array}{llll} & \frac{9}{x+2} &=& \frac{7}{x}\\ & 9x &=& 7(x+2) \\ & 9x &=& 7x+14 \\ & 2x &=& 14 \\ & x &=& 7 \end{array} $

    • Diese Lösung ist in der Definitionsmenge $\mathbb{D}$ enthalten.
    • Die Lösungsmenge lautet $\mathbb{L}=\{7\}$.
    Beispiel 4: $~\frac{21}{2x-3}=\frac{15}{x}$

    • $\mathbb{D}=\mathbb{Q}\setminus\{0;\ 1,5\}$
    • Gleichung mittels Methode der Über-Kreuz-Multiplikation lösen
    $ \begin{array}{llll} & \frac{21}{2x-3} &=& \frac{15}{x}\\ & 21x &=& 15(2x-3) \\ & 21x &=& 30x-45 \\ & 45 &=& 9x \\ & 5 &=& x \end{array} $

    • Diese Lösung ist in der Definitionsmenge $\mathbb{D}$ enthalten.
    • Die Lösungsmenge lautet $\mathbb{L}=\{5\}$.
    Beispiel 5: $~\frac 4{x-2}=\frac{2x}{x-2}$

    • $\mathbb{D}=\mathbb{Q}\setminus\{2\}$
    • Da diese Bruchterme bereits einen gemeinsamen Hauptnenner haben, formen wir mittels Äquivalenzumformung um.
    $ \begin{array}{llll} & \frac 4{x-2}=\frac{2x}{x-2}\\ & \frac{4-2x}{x-2} &=& 0 \\ & 4-2x &=& 0\\ & 4 &=& 2x \\ & 2 &=& x \end{array} $

    • Diese Lösung ist nicht in der Definitionsmenge $\mathbb{D}$ enthalten.
    • Die Lösungsmenge ist somit leer. Wir schreiben dann $\mathbb{L}=\{\ \}$.
  • Gib an, welche Bruchgleichungen im nächsten Schritt mit der Über-Kreuz-Multiplikation gelöst werden können.

    Tipps

    Bei der Methode der Multiplikation über Kreuz wird der Zähler des ersten Bruchs mit dem Nenner des zweiten Bruchs multipliziert und dann wird der Zähler des zweiten Bruchs mit dem Nenner des ersten Bruchs multipliziert.

    Diese Methode bietet sich besonders dann an, wenn auf beiden Seiten der Bruchgleichung je ein Bruchterm vorhanden ist.

    Hier siehst du Bruchgleichungen, welche im nächsten Rechenschritt noch nicht per Methode der Über-Kreuz-Multiplikation gelöst werden können:

    • $\frac{10}{x}-\frac{8}{x-1}=0$ und
    • $\frac{9}{x}=\frac{22}{x+8}+1$.
    Lösung

    Bei der Methode der Über-Kreuz-Multiplikation wird der Zähler des ersten Bruchs mit dem Nenner des zweiten Bruchs multipliziert und dann wird der Zähler des zweiten Bruchs mit dem Nenner des ersten Bruchs multipliziert. Anschließend wird die resultierende Gleichung mittels Äquivalenzumformungen umgestellt und so nach $x$ aufgelöst.

    Diese Methode bietet sich besonders dann an, wenn auf beiden Seiten der Bruchgleichung je ein Bruchterm vorhanden ist. Bei welchen Gleichungen diese Bedingung erfüllt ist, überprüfen wir nun gemeinsam.

    Gleichung 1

    $\frac{10}{x}=\frac{8}{x-1}$

    Diese Bruchgleichung hat auf beiden Seiten je einen Bruchterm und kann somit im nächsten Rechenschritt per Methode der Multiplikation über Kreuz gelöst werden.

    Gleichung 2

    $\frac{5}{x-1}=\frac{12}{x+2}-\frac{3}{x-7}$

    Diese Bruchgleichung hat auf der linken Seite einen Bruchterm. Allerdings können wir auf der rechten Seite zwei weitere Bruchterme feststellen. Somit kann diese Gleichung im nächsten Rechenschritt nicht per Methode der Über-Kreuz-Multiplikation gelöst werden.

    Gleichung 3

    $\frac {12}x-\frac {1}{x-4}=0$

    Auch hier sehen wir auf einer Seite der Bruchgleichung zwei Bruchterme. Auf der anderen Seite steht eine $0$. Diese Bruchgleichung kann somit nicht im nächsten Rechenschritt per Methode der Über-Kreuz-Multiplikation gelöst werden. Man könnte sie im ersten Rechenschritt allerdings per Äquivalenzumformung so umstellen, dass die Methode der Über-Kreuz-Multiplikation im zweiten Rechenschritt angewendet werden kann.

    Gleichung 4

    $\frac{9}{x+2}=\frac{7}{x}$

    Diese Bruchgleichung hat wieder auf beiden Seiten je einen Bruchterm und kann somit im nächsten Rechenschritt per Methode der Über-Kreuz-Multiplikation gelöst werden.

    Gleichung 5

    $\frac{21}{2x-3}=\frac{15}{x}$

    Auch hier kann bereits im nächsten Rechenschritt die Methode der Über-Kreuz-Multiplikation angewendet werden.

  • Ermittle Definitions- und Lösungsmenge der gegebenen Bruchgleichung.

    Tipps

    Stelle die Bruchgleichung zunächst so um, dass du alle gleichnamigen Bruchterme zusammenfassen kannst.

    Schau dir das folgende Beispiel an.

    $ \begin{array}{rllll} \frac 3x+\frac 2{x-2} &=& \frac 8{x-2}-\frac 6x && \vert +\frac 6x\\ \frac 3x +\frac 6x +\frac 2{x-2} &=& \frac 8{x-2} && \vert -\frac 2{x-2} \\ \frac 3x +\frac 6x &=& \frac 8{x-2}-\frac 2{x-2} && \\ \frac 9x &=& \frac 6{x-2} && \end{array} $

    Nun kann die Rechnung mit einer der drei Methoden fortgesetzt werden.

    Lösung

    Im Folgenden lösen wir gemeinsam die von Alwin aufgestellte Bruchgleichung.

    $\frac{10}{x+5}-\frac{7}{x-1}=-\frac{14}{x-1}+\frac{20}{x+5}$

    Diese sieht auf den ersten Blick kompliziert aus, nimmt aber bereits nach zwei Äquivalenzumformungen die uns bekannte Form an. Wir haben hier nämlich gleichnamige Bruchterme. Somit können wir die Bruchgleichung zunächst so umstellen, dass wir diese gleichnamigen Bruchterme zusammenfassen können. Aber bevor wir das machen, bestimmen wir erst einmal die Definitionsmenge.

    Schritt 1: Definitionsmenge bestimmen

    Wir haben hier die zwei Nennerterme $x+5$ und $x-1$. Wir erhalten somit die Definitionsmenge $\mathbb{D}=\mathbb{Q}\setminus\{-5;\ 1\}$.

    Schritt 2: Bruchterme so weit wie möglich zusammenfassen

    $ \begin{array}{rllll} \frac{10}{x+5}-\frac{7}{x-1} &=& -\frac{14}{x-1}+\frac{20}{x+5} && \vert -\frac{10}{x+5}\\ -\frac{7}{x-1} &=& -\frac{14}{x-1}+\frac{20}{x+5}-\frac{10}{x+5} && \vert +\frac{14}{x-1} \\ \frac{14}{x-1}-\frac{7}{x-1} &=& \frac{20}{x+5}-\frac{10}{x+5} && \\ \frac {7}{x-1} &=& \frac {10}{x+5} && \end{array} $

    Schritt 3: Mittels einer Methode Bruchgleichung lösen

    Wir nutzen hier die Methode der Über-Kreuz-Multiplikation. Du kannst die Gleichung aber gern auch mit einer der anderen beiden Methoden lösen.

    $ \begin{array}{rllll} \frac {7}{x-1} &=& \frac {10}{x+5} && \\ 7(x+5) &=& 10(x-1) && \\ 7x+35 &=& 10x-10 && \vert +10 \\ 7x+45 &=& 10x && \vert -7x \\ 45 &=& 3x && \vert :3 \\ 15 &=& x && \end{array} $

    Schritt 4: Lösung bezüglich der Definitionsmenge überprüfen und Lösungsmenge angeben

    Die Lösung $x=15$ ist in der Definitionsmenge $\mathbb{D}$ enthalten. Somit lautet die Lösungsmenge $\mathbb{L}=\{ 15\}$.