30 Tage kostenlos testen: Mehr Spaß am Lernen.
30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage kostenlos testen

Bruchgleichungen

Einfach lernen mit Videos, Übungen, Aufgaben & Arbeitsblättern

Alle Klassen
  1. 7. Klasse
  2. 8. Klasse
  3. 9. Klasse
  4. 10. Klasse

Alle Themen in Bruchgleichungen

Themenübersicht in Bruchgleichungen

Was ist eine Bruchgleichung?

In einer Bruchgleichung kommt die Variable $x$ mindestens einmal im Nenner eines Bruches vor.

Wichtig dabei ist, dass du dir zunächst einmal den Definitionsbereich einer solchen Gleichung klarmachst. Da das Teilen durch $0$ nicht definiert ist, musst du zunächst einmal alle Werte für $x$ ausschließen, für die ein Nenner $0$ werden kann.

Schau dir ein Beispiel an. Löse folgende Bruchgleichung:

$\frac{10}{4x+1}=2$

Es muss $4x+1\neq 0$ sein. Du löst also die Gleichung $4x+1=0$, was zu $x=-\frac14=-0,25$ führt. Der Definitionsbereich lautet nun $\mathbb{D}=\mathbb{R}\setminus \{-0,25\}$.

Nun kannst du die Bruchgleichung lösen.

Lösen von Bruchgleichungen

Du wendest Äquivalenzumformungen an:

$\begin{array}{rclll} \frac{10}{4x+1}&=&2&|&\cdot (4x+1)\\\ 10&=&2(4x+1)&|&:2\\\ 5&=&4x+1&|&-1\\\ 4&=&4x&|&:4\\\ 1&=&x \end{array}$

$x=1\in\mathbb{D}$ löst also die Bruchgleichung. Du kannst die Probe durchführen und erhältst $\frac{10}{4\cdot 1+1}=\frac{10}5=2$. ✓

Bruchgleichungen mit mehreren Brüchen

Die Variable $x$ kann auch in mehreren Brüchen vorkommen. Schau dir folgende Bruchgleichung an:

$\frac4{x+1}+\frac3x=2$

Zunächst bestimmst du auch hier den Definitionsbereich. Dieser lautet $\mathbb{D}=\mathbb{R}\setminus\{-1;0\}$.

Du bringst nun die beiden Brüche auf der linken Seite der Gleichung auf einen gemeinsamen Nenner:

$\begin{array}{rclll} \frac4{x+1}+\frac3x&=&2\\\ \frac{4x}{(x+1)x}+\frac{3(x+1)}{(x+1)x}&=&2\\\ \frac{7x+3}{x^2+x}&=&2&|&\cdot (x^2+x)\\\ 7x+3&=&2x^2+2x&|&-7x-3\\\ 0&=&2x^2-5x-3 \end{array}$

Du erhältst hier eine quadratische Gleichung, welche du zum Beispiel mit der Mitternachtsformel lösen kannst:

$\begin{array}{rcl} x_{1;2}&=&\frac{5\pm\sqrt{25+24}}{4}\\\ x_1&=&\frac{5+7}4=3\\\ x_2&=&\frac{5-7}4={-0,5} \end{array}$

Führe auch hier die Probe durch:

  • $x_{1}=3$ führt zu $\frac4{3+1}+\frac3{3}=\frac44+\frac33=1+1=2$. ✓
  • $x_{2}={-0,5}$ führt zu $\frac4{{-0,5}+1}+\frac3{-0,5}=\frac4{0,5}-\frac3{0,5}=8-6=2$. ✓