30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Entstehung mechanischer Wellen 06:36 min

Textversion des Videos

Transkript Entstehung mechanischer Wellen

Hallo, ich bin Georg und in diesem Video beschäftigen wir uns einmal mit den Arten mechanischer Wellen. Dazu schauen wir uns ein Phänomen aus der Natur an. Nämlich ein Erdbeben. Um konkret zu schauen, welche verschiedenen Wellenarten dabei vorkommen. Dennoch wäre es gut, wenn Du schon etwas über die Entstehung von mechanischen Wellen weißt. Wenn es irgendwo auf der Welt ein Erdbeben gibt, dann spricht man von Erdbebenwellen. Oder auch seismischen Wellen. Diese seismischen Wellen werden von sogenannten Seismographen registriert. Diese Geräte können kleinste Erschütterungen wahrnehmen und zeichnen sie auf. Das sieht dann in etwa so aus. Charakteristisch für solche Aufnahmen, sind vor allem diese drei Ausschläge. Um diese Ausschläge gleich besser deuten zu können, gehen wir noch einmal zu unserem Modell der mechanischen Welle über. Mechanische Wellen können sich auf zwei verschiedene Arten ausbreiten. Die erste Möglichkeit ist die Ausbreitung als „Transversalwelle“. Oder auch „Querwelle“. Bei der Transversalen Welle schwingen, wie hier in unserem Beispiel, die einzelnen Federschwinger senkrecht auf und ab. Sie sind durch eine Art Gummiband miteinander verbunden. Die Schwingungsenergie kann somit an die nächste Feder weitergegeben werden. Die Welle, die sich dadurch ausbreiten kann, breitet sich senkrecht zur Schwingungsrichtung aus. Als Beispiel kannst Du dabei immer an ein Stück Schnur denken, das Du an einem Ende hin und her bewegst. Neben den Transversalwellen, gibt es noch die „Longitudinalwellen“. Die Du auch „Längswellen“ nennen kannst. Bei den Longitudinalwellen kannst Du Dir das in etwa so vorstellen, dass die einzelnen Federschwinger in einer Reihe angebracht sind. Wenn wir eine Feder auslenken, dann überträgt sich diese Auslenkung auf die nächste Feder. Und so weiter. Die Welle breitet sich entlang der Schwingungsrichtung der einzelnen Federschwinger aus. Bei einer langen Spiralfeder kannst Du dies sogar direkt beobachten. Diese beiden Schwingungssysteme breiten sich jedoch nur auf einer Linie aus. Es sind „lineare Wellen“. Dieses Prinzip können wir natürlich auch auf eine ganze Fläche von solch gekoppelten Federschwingern ausdehnen. Auch hier können wir wieder Transversalwellen erzeugen. Und auch Longitudinalwellen. Dabei werden jetzt ganze Linien verschoben oder zusammengedrückt. Diese Wellen werden „Flächenwellen“ genannt. Dabei kann die transversale Auslenkung entweder so stattfinden. Oder so wie bei einer Zielflagge beim Autorennen. Du kannst ja einmal versuchen, ob Du solche transversalen Flächenwellen mit einem Handtuch hinbekommst. So, jetzt packen wir eine weitere Ebene dazu. Wir befinden uns nun in unserem alltäglichen, dreidimensionalen Raum. Auch hier gibt es longitudinale und transversale Wellen. Es handelt sich also um „räumliche Wellen“. Ein Beispiel für räumliche Longitudinalwellen sind Schallwellen in Luft oder Wasser. Da Schall sich ja kugelförmig in alle Richtungen ausbreitet. Mechanische Transversalwellen, die sich im Raum ausbreiten, kommen jedoch nur in Festkörpern vor. Dies bringt uns zu unserem Diagramm vom Anfang zurück. Bei einem Erdbeben entstehen genau solche Longitudinalwellen und Transversalwellen. Sie breiten sich in der Erde aus und werden dann von den Seismographen registriert. Dabei wird der erste Ausschlag durch die Longitudinalwellen verursacht. Daher nennt man diese Wellen auch „Primärwellen“. Der zweite Peak wird durch die Transversalwellen verursacht. Daher kommt auch der Name „Sekundärwellen“. Zwischen diesen beiden Peaks vergeht etwas Zeit, in der nichts passiert. Wie können wir uns dies erklären? Die Longitudinalwellen und die Transversalwellen haben unterschiedliche „Ausbreitungsgeschwindigkeiten“. Dabei breiten sich die Longitudinalwellen mit einer Ausbreitungsgeschwindigkeit von circa fünf bis acht Kilometer pro Sekunde, etwas schneller aus als die Transversalwellen, mit nur drei bis 4,5 Kilometer pro Sekunde. Schauen wir uns noch einmal an, wie durch eine Art Störung in einem Festkörper wie Metall oder auch der Erde, sowohl Longitudinalwellen als auch Transversalwellen entstehen können. Bei einem Erdbeben überlagern sich natürlich die Bewegungsrichtungen, so dass Longitudinalwellen und Transversalwellen sich in alle Richtungen ausbreiten. Was ist nun mit diesem dritten Ausschlag? Hierbei handelt es sich um „Oberflächenwellen“, die eine Überlagerung von longitudinalen und transversalen Wellen sind. Diese Oberflächenwellen breiten sich dem Namen nach, nur an der Erdoberfläche aus. Sie sind zwar die langsamsten Wellen, sorgen aber für die meiste Zerstörung. Woher kommt das? Die Oberflächenwellen klingen nicht so schnell ab, wie die Longitudinal- oder Transversalwellen in der Erde. Das bedeutet, dass sie nach großen Entfernungen noch immer sehr stark sind. Okay, machen wir noch einmal eine kurze Zusammenfassung: Am Beispiel des Erdbebens konnten wir folgende Unterscheidung der Wellen vornehmen. Je nach Dimension gibt es lineare Wellen, Flächenwellen oder Raumwellen. In allen drei Fällen kommen je nach Schwingungs- und Ausbreitungsrichtung, sowohl Longitudinalwellen als auch Transversalwellen vor. Zusätzlich treten bei den räumlichen Wellen noch die Oberflächenwellen auf. Die in unserem Fall eine Überlagerung von longitudinalen und transversalen Wellen waren. Damit sage ich Tschüss und bis zum nächsten Mal.

2 Kommentare
  1. Hallo Jan F.,

    der Sinus von (20 * pi()) ist nicht 0. Bitte prüfe nochmal, ob du deinen Taschenrechner auf „deg“ oder „rad“ eingestellt hast. Er muss auf „deg“ stehen.

    Von Karsten Schedemann, vor etwa einem Jahr
  2. Wenn ich bei der Zusatzaufgabe den Sinus von 20 Pi ausrechne kommt bei mir 0 raus. Wie ist die Auslenkung dann bei 6,2 cm? Kann mir jemand weiterhelfen?

    Von Jan F., vor etwa einem Jahr

Entstehung mechanischer Wellen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Entstehung mechanischer Wellen kannst du es wiederholen und üben.

  • Nenne die Definition der mechanischen Welle.

    Tipps

    Stelle dir eine stehende Welle vor, die mit einem Springseil erzeugt wird. Was breitet sich da aus und was wird dabei übertragen?

    Lösung

    Was ist eine mechanische Welle?

    Eine mechanische Welle ist die räumliche Ausbreitung einer Schwingung, bei der Energie übertragen, jedoch kein Stoff transportiert wird.

    Das bedeutet, das mechanische System kann zwar schwingen, wobei sich zwangsläufig auch Masse bewegt, aber letztendlich schwingt diese dabei nur auf und ab.

    Bringt man z.B. ein Seil zum Schwingen, so wird das Seil nicht verschwinden. Die Schwingung pflanzt sich lediglich an dem Seil entlang fort. Sie breitet sich also räumlich aus.

  • Nenne Beispiele für mechanische Schwinger.

    Tipps

    Licht ist eine Welle.

    Welche dieser Schwinger gehören in die Mechanik.

    Lösung

    Es gibt sehr viele mechanische Schwinger, aber nicht alles ist mechanisch.

    Bei einer Schaukel schwingt man hin und her. Auch die Stimmgabel und die Gitarrensaite machen das, nur schneller. Dadurch entsteht dann auch eine Frequenz, die wir als Ton wahrnehmen. Bei der Schaukel ist die Schwingfrequenz dagegen viel zu niedrig, man hört höchstens den Luftzug pfeifen.

    Auch das Pendel ist ein Musterbeispiel für eine einfache mechanische Schwingung.

    Die Radioantenne bzw. der Radiosender sendet elektromagnetische Wellen also Funkwellen aus. Das sind keine mechanischen Wellen. Licht ist auch eine Welle, nur viel hochfrequenter.

  • Ordne den Schwingungen deren Übertragungsmedien zu.

    Tipps

    Mit der Perlenkette ist gemeint, dass eine Kette z.B. mit der Hand hin und her ausgelenkt wird.

    Lösung

    Mechanische Schwingungen müssen sich in einem Medium fortpflanzen. Bei der Schallausbreitung wird die Schwingung von einem Luftteilchen zum anderen übertragen. Beim Wasser ist es ebenso, genau wie beim Erdbeben.

    Bei der Perlenkette bewegt sich die Kette hin und her, wodurch eine Schwingung entsteht. Das Medium ist dabei die Kette selbst bzw. das Band, das die Kettenglieder zusammenhält.

  • Berechne die Auslenkung des Schwingers zur Zeit t.

    Tipps

    Die Kreisfrequenz ist $\omega = \dfrac{2\pi}{T}$.

    Lösung

    Wie bestimmt man nun, wie weit ein mechanischer Schwinger zu einem beliebigen Zeitpunkt ausgelenkt ist?

    Na mit dieser Gleichung:

    $s_{t_1}=s_{max}\cdot \sin(\omega t_1)$,

    wobei $s_{max}$ die maximale Auslenkung und $\omega = \dfrac{2\pi}{T}=10 \pi \dfrac{1}{~\text{s}}$ ist.

    Also:

    $s_{t_{1}}=7~\text{cm}\cdot \sin(10\pi \dfrac{1}{~\text{s}}\cdot 2~\text{s})=7~\text{cm}\cdot \sin(20\pi)=6,2~\text{cm}$.

    Nach 2 Sekunden ist der Schwinger also um 6,2 Zentimeter ausgelenkt.

  • Beschreibe die Bewegungen eines mechanischen Schwingers.

    Tipps

    Auch wenn die Massepunkte schwingen, bewegen sie sich nur um ihre Ruhelage und bleiben fest am gleichen Fleck.

    Die Schwinger stellen den Stoff dar.

    Lösung

    Solch eine Schwingung ist ein einfaches Musterbeispiel. Mechanische Schwingungen treten in der Mechanik aber dauernd auf.

    Da sie gekoppelt sind, bringt ein Schwinger den anderen mit etwas Verzögerung auch zum Schwingen. Dabei bildet sich eine Sinusschwingung aus.

    Da diese Schwinger fest sind und nur um ihre Ruhelage schwingen, findet kein Stofftransport statt. Aber wie oben beschrieben, wird die Schwingung durch die Kopplung fortgepflanzt.

  • Ordne die Wellentypen ihrem Schwingungsmuster zu.

    Tipps

    Schaue dir die Beschriftungen an und überlege, welche dieser Wellen gleichmäßiger, und welche chaotischer sein könnten.

    Lösung

    Betrachtet man verschiedene Wellen mittels Oszilloskop, so kann man anhand des Graphs bereits ein paar Vermutungen anstellen.

    Natürlich lassen sich Wasserwellen nicht einfach an ein Oszilloskop anstöpseln, aber man kann ihre Schwingform auch so erkennen. Sie ist recht chaotisch zackig. Die eines Wassertropfens, der auf Wasser trifft, ist dagegen sehr gleichmäßig, da sich die Wellen nicht gegenseitig beeinflussen.

    Auch bei Schallwellen kann man so unterscheiden: Geräusche sind ein Wirrwarr an Frequenzen und Schwingungen. Periodische Wellen wie Klänge und Töne folgen dagegen einem sich wiederholenden (periodischen) Muster.

    Und zu guter Letzt: die harmonische Welle, also z.B. eine einfache Sinusschwingung.