Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Elektrizität und elektrische Energie

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.8 / 18 Bewertungen
Die Autor*innen
Avatar
Team Digital
Elektrizität und elektrische Energie
lernst du in der 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse

Grundlagen zum Thema Elektrizität und elektrische Energie

Elektrische Energie – einfach erklärt

Hast du dich schon einmal gefragt, warum eine Glühlampe leuchtet? Der Grund dafür ist die elektrische Energie. Stell dir einen Stromkreis vor, in dem eine Batterie, eine Glühlampe und ein Schalter mit Kabeln miteinander verbunden sind. Man nennt so etwas einen elektrischen Schaltkreis. Wenn man einen solchen Schaltkreis zeichnet, benutzt man zur Vereinfachung bestimmte Zeichen für die Objekte, die sogenannten Schaltzeichen. Das Bild nennt man dann einen Schaltplan.

offener Stromkreis mit Glühlampe

Wenn du dir das Symbol für den Schalter genauer ansiehst, kannst du schon etwas über die elektrische Energie lernen. Der Schalter steht auf eingeschaltet, wenn er geschlossen ist. Dann leuchtet auch die Glühlampe. Wenn der Schalter offen ist, leuchtet sie nicht. Wir können also schon aufschreiben:

Eine Lampe leuchtet nur in einem geschlossenen Stromkreis!

Das legt nahe, dass in einem geschlossenen Stromkreis etwas fließt. Das sind die elektrischen Ladungen. Den Fluss der Ladungen nennen wir den elektrischen Strom. Er hat das Formelzeichen $I$. Genauer gesagt spricht man von der Stromstärke $I$. Sie ist die Grundgröße der Elektrizität.

Stell dir vor, wir würden zwar den Schalter schließen, aber die Batterie aus dem Stromkreis entfernen. Dann würde die Lampe nicht leuchten. Die Batterie muss also etwas mit dem Strom zu tun haben. Sie ist sozusagen der Antrieb des Stroms. Sie ist ein Energiespeicher und gibt elektrische Energie ab, die dann durch den elektrischen Strom transportiert wird. Der Strom ist somit der Energieträger der elektrischen Energie. Das funktioniert so lange, bis die Batterie leer ist, also der Energiespeicher aufgebraucht ist.

Elektrische Energie – Definition

Die elektrische Energie hat das Formelzeichen $E$, wie die meisten Energieformen, und hat auch die Einheit Joule $(\pu{J})$.

Als elektrische Energie bezeichnet man per Definition Energie, die durch Elektrizität übertragen oder in elektrischen Feldern gespeichert wird.

Elektrische Energie – Umwandlung

Wenn der Schalter geschlossen und die Batterie voll ist, fließt also elektrischer Strom von einem zum anderen Pol der Batterie und sorgt dabei dafür, dass die Lampe leuchtet. Die Glühlampe leuchtet, weil sie elektrische Energie in Lichtenergie und Wärme umwandelt. Es ist wichtig, dass du das Wort umwandeln und nicht verbrauchen benutzt. Elektrische Energie kann man nämlich in andere Energieformen umwandeln, aber nicht verbrauchen – genauso übrigens wie jede andere Energieform.

Die Polung der Batterie bestimmt auch, in welche Richtung der Strom fließt. Physikalisch gesehen fließt der Strom hier vom Minus- zum Pluspol. Es gibt aber auch noch die Sichtweise der technischen Stromrichtung, nach der der Stromfluss vom Plus- zum Minuspol definiert ist. Bei manchen Bauteilen hat die Stromrichtung einen Einfluss darauf, ob und wie sie funktionieren (egal ob die physikalische oder die technische Stromrichtung betrachtet wird). Sobald der Schalter geöffnet wird, fließt kein Strom mehr. Der Strom fließt also entweder überall oder nirgends im Stromkreis. Aber ist er auch überall gleich groß?

Schauen wir uns an, was passiert, wenn wir zwei exakt gleiche Glühlampen hintereinander in den Stromkreis schalten.

geschlossener Stromkreis mit zwei Glühlampen

Bei geschlossenem Schalter leuchten beide Lampen gleich hell, aber etwas dunkler, als wenn nur eine Lampe im Stromkreis ist. Durch beide Lampen fließt also der gleiche Strom. (Wieso sie trotzdem etwas dunkler leuchten, weißt du, wenn du mehr zum Thema elektrische Spannung gelernt hast.)

Elektrische Energie – Formel

Die Formel für die elektrische Energie in einem Stromkreis lautet:

$E=Q \cdot U$

Da die Ladung $Q$ eine nicht ganz einfach zu messende Größe ist, können wir auch $Q=I \cdot \Delta t$ verwenden und einsetzen. Dann gilt:

$E=U \cdot I \cdot \Delta t$

Zusammenfassung der elektrischen Energie

  • Die elektrische Energie ist die Form der Energie, die durch Elektrizität, also elektrischen Stromfluss, übertragen wird.
  • Eine Batterie ist ein Energiespeicher für elektrische Energie. Elektrische Energie kann aber auch in einem elektrischen Feld gespeichert sein.
  • Die elektrische Energie in einem Stromkreis kann auf verschiedene Arten berechnet werden, zum Beispiel mit der Formel $E = Q \cdot U$ oder auch mit $E= U \cdot I \cdot \Delta t$.

Häufige Fragen zum Thema elektrische Energie

Was ist elektrische Energie?
Wie wird elektrische Energie erzeugt?
Woher kommt die elektrische Energie?
Wie entsteht elektrische Energie?
Wie wird elektrische Energie genutzt?
Welche Nachteile hat die elektrische Energie?
Welche Einheit hat die elektrische Energie?

Transkript Elektrizität und elektrische Energie

Elektrizität hat schon etwas Magisches! So mancher Zauberkünstler hat mit Tricks, die auf elektrischen Phänomenen beruhen, großes Geld verdient! Aber auch für DICH lohnt es sich, über "Elektrizität und elektrische Energie" Bescheid zu wissen. Denn auch wenn das für uns heute keine Zauberei mehr ist – es ist schon verblüffend, was durch Elektrizität alles möglich ist! Lohnt sich, da mal genauer reinzuschauen. Fangen wir mit dem BEGRIFF an: Was versteht man eigentlich unter "Elektrizität"? "Elektrostatische Anziehung", "Blitzentladung", "Stromfluss" und auch "Magnetismus" sind alles Phänomene, die unter dem Sammelbegriff Elektrizität zusammengefasst werden. Sie alle haben eins gemeinsam: Ihre Ursache ist das "Verhalten elektrischer Ladungen". Elektrische Ladungen sind überall – in jedem Stoff, in jedem Körper. Genauer gesagt sind es TEILCHEN, die positive und negative Ladungen tragen, zum Beispiel "Protonen" und "Elektronen", die wir als "Ladungsträger" bezeichnen. Meistens sind diese SO verteilt, dass sich die Ladungen ausgleichen. Aber wenn sie aus irgendeinem Grund getrennt werden, entsteht ein Ungleichgewicht, und es kommt Bewegung ins Spiel! Dann wird ENERGIE freigesetzt, die umgewandelt werden kann und so die verschiedensten Vorgänge anstößt. Wir sprechen von "elektrischer Energie". "Elektrizität" schließt also alle Phänomene ein, die durch das Verhalten und die Wechselwirkungen zwischen elektrischen Ladungen hervorgerufen werden, womit "elektrische Energie" verbunden ist. Die "Elektrizitätslehre" befasst sich damit, wie diese Phänomene und Vorgänge "verstanden, kontrolliert und genutzt" werden können. So werden all die fantastischen Möglichkeiten eröffnet, die die elektrische Energie uns bietet! Bei einem einfachen "Stromkreis" können wir das konkret nachvollziehen: Es gibt eine elektrische QUELLE, in der Ladungen GETRENNT werden. Die "Spannung U", die hier erzeugt wird, ist sozusagen die treibende KRAFT, die den Stromfluss im Stromkreis ermöglicht. Die elektrische Quelle oder "Spannungsquelle" ist damit auch die ENERGIE-Quelle, die die "elektrische Energie" freisetzt. "Spannung U" und "elektrische Energie E" sind allerdings nicht identisch! Die Spannung bezeichnet das POTENTIAL, das in den getrennten Ladungen steckt. Sie ist ein Maß für die Energie in jedem einzelnen Ladungsträger. Aber erst wenn sich die Ladungsträger in BEWEGUNG versetzen, also wenn STROM fließt, können wir von "elektrischer Energie" sprechen. Eine Spannung kann nämlich auch bestehen, OHNE dass Energie freigesetzt wird: Eine Batterie, die nicht angeschlossen ist, trägt bereits GETRENNTE Ladungen in sich – und damit eine Spannung, zum Beispiel neun Volt. Sie ist ein sogenannter Energie-SPEICHER. Erst wenn sie angeschlossen wird, wird sie zur Energie-QUELLE und es fließt Strom. Der Strom, also die fließenden Ladungsträger, stellen den Energie-TRÄGER dar, der die freigesetzte elektrische Energie TRANSPORTIERT. Diese Zusammenhänge im Stromkreis werden oft mit einem "Wasserkreislauf" verglichen: Die elektrische Quelle wirkt wie eine PUMPE, die Wasser entgegen der "Schwerkraft" nach oben pumpt. Der erreichte HÖHENUNTERSCHIED gibt dem Wasser die Möglichkeit, wieder nach unten zu fließen – er entspricht der "Spannung U", die durch die Ladungstrennung in der elektrischen Quelle besteht. Wenn das Wasser dann nach UNTEN fließt, steckt viel "Energie" in der Strömung – umso mehr, je GRÖẞER der Höhenunterschied ist, und je MEHR Wasser im Kreislauf fließt. Und genau wie die Energie der STRÖMUNG genutzt werden kann, um zum Beispiel ein "Wasserrad" anzutreiben, und damit in BEWEGUNGS-Energie umgewandelt wird, so kann die elektrische Energie im STROMKREIS beispielsweise von einer Lampe in LICHT-Energie umgewandelt werden. Die Lampe stellt also, wie das Wasserrad, einen Energie-WANDLER dar, der die elektrische Energie für uns NUTZBAR macht. Der Betrag der "elektrischen Energie E" ist dabei gleich dem Produkt aus der "Ladungsmenge Q", die als Stromfluss in Bewegung versetzt wird, und der "Spannung U". Die Einheit "Coulomb" der Ladungsmenge, und die Einheit "Volt" der Spannung, werden zur Einheit "Joule" für die Energie vereinigt. Ein Joule reicht in etwa aus, um ein kleines L-E-D-Lämpchen eine Sekunde lang leuchten zu lassen. Teilt man die umgewandelte Energiemenge durch die Zeit, in der sie genutzt wurde, also hier durch die eine Sekunde, erhält man eine Angabe in der Einheit WATT. Das beschreibt die elektrische LEISTUNG – eine nützliche Angabe, die oft auf Lampen und anderen elektrischen Geräten zu finden ist, vor allem wenn es um den Energie-VERBRAUCH geht. Wobei von "Verbrauch" eigentlich keine Rede sein dürfte, denn die elektrische Energie verschwindet ja nicht, sondern wird lediglich UMGEWANDELT. Das geht übrigens auch andersrum – zum Beispiel kann BEWEGUNGS-Energie auch in ELEKTRISCHE Energie umgewandelt werden – genau das passiert in einem Wasserkraftwerk! Genial, diese "Elektrizität", oder? Fassen wir zusammen: "Elektrizität" ist ein Sammelbegriff für alle Phänomene, die auf dem "Verhalten elektrischer Ladungen" basieren. In einem Stromkreis kann die "elektrische Energie", die durch eine elektrische Quelle freigesetzt und durch die im Stromfluss bewegten Ladungsträger TRANSPORTIERT wird, von einem elektrischen Gerät, das als ENERGIEWANDLER funktioniert, nutzbar gemacht werden. Und das ist keineswegs Zauberei! Oder was sagt DIESER Meister der Physik?

1 Kommentar
1 Kommentar
  1. Gut

    Von Giuliano, vor 3 Monaten