sofatutor 30 Tage
kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Astronomische Koordinatensysteme 12:53 min

Textversion des Videos

Transkript Astronomische Koordinatensysteme

Hallo und herzlich willkommen bei einem Video von Dr. Psi. Heute lernen wir zwei Koordinatensysteme kennen. Mit diesen kannst du dich am Himmel orientieren und zwar kannst du dort die Orte von Himmelskörpern beschreiben und zwar sind das einmal das Horizontsystem und dann das rotierende Äquatorsystem. Lass uns schauen, was sich hinter diesen Koordinatensystemen verbirgt und was damit gemacht werden kann. Einmal angenommen, wir wollen uns am Sternenhimmel der Himmelskugel orientieren, so stehen uns bekannte Sternbilder wie zum Beispiel der Orion oder einzelne Sterne wie der Nordpolarstern zur Verfügung. Aber analog zur Orientierung auf der Erde reicht eine solch grobe Angabe für genaue Positionsbestimmungen nicht aus. Wie auf der Erde brauchen wir ein Koordinatensystem. Ein Ort auf der Erde ist bekanntlich durch seine geografische Länge und Breite festgelegt. Es liegt also nahe, an der Himmelskugel auch ein Gradnetz, anzubringen, wenigstens gedanklich. Wir stellen uns als Beobachter an einen bestimmten Punkt der Erde und wollen mit einem Fernrohr einen bestimmten Stern anpeilen. Dann können wir etwa folgende Festlegungen im sogenannten Horizontsystem treffen und dieses Horizontsystem ist, wie gesagt, ein Koordinatensystem. Du siehst hier eine schematische Darstellung, die dieses Horizontsystem näher beschreibt. Der senkrecht über uns als Beobachter befindliche Punkt heißt Zenit; der gegenüberliegende Punkt Nadir. Wir sehen weiter den Himmelsnordpol und den Himmelssüdpol sowie die Erdachse. Sodann verläuft senkrecht zur Lotgeraden zwischen Zenit und Nadir die Horizontebene und dann haben wir schließlich noch die Äquatorebene. Und nun soll die Position eines Sterns am Himmel angegeben werden. Die aktuellen Positionen eines Planeten, die werden auch als Wanderer bezeichnet, wenn wir die ermitteln wollen, dann können wir das mit Hilfe eines Astronomieprogramms tun, das gibt es kostenfrei im Internet zu Hauf. Du solltest dich, wenn du überhaupt an diesem Thema interessiert bist, mit einem solchen Programm ausrüsten. Nun also zur Position eines Sterns. Wir stellen uns hier als Beobachter hin und wollen einen Stern anpeilen. Wir stehen auf der Horizontebene. Und hier siehst du, wie dieses Koordinatensystem im Horizontsystem funktioniert. Kann man schon sagen. Zwei Koordinaten bestimmen die Position. Einmal die Höhe h, das ist ein Winkel, in Grad, bezogen auf die Horizontebene, und dann das Azimut a. Das ist auch ein Winkel im Grad, und zwar gemessen von der Südrichtung im Uhrzeigersinn. Die Höhe kann über dem Horizont die Werte zwischen 0 Grad, Horizont selbst, und 90 Grad, Zenit, annehmen. Das Azimut kann wiederum alle Winkelwerte zwischen 0 Grad und klar: 360 Grad annehmen. Und hier mal ein Beispiel, wie so etwas ausschaut. Und zwar für den Planeten Jupiter: Wir müssen dazu das Datum angeben: am 26.05. im Jahr 2004 und zwar im Breitengrad 48,8 und Längengrad 9,8. Diese Breite und Länge bezeichnet, wie gesagt, einen geografischen Ort und das ist in der Nähe von etwa Schwäbisch Gmünd und zwar um 21:00 Uhr und Länge und Breite, das notiere ich jetzt nicht weiter; das ist also ein bestimmter Ort, an dem unser Fernrohr steht, und dann finden wir das Azimut. a hat 26,6 Grad und die Höhe h, die beträgt 47,6 Grad. So, und wenn wir jetzt an derselben Stelle um 23:00 Uhr die Koordinaten ablesen, dann wäre das einmal das Azimut 61,7 Grad und die Höhe 33,8 Grad. Du siehst also: Wenn wir uns den Planeten Jupiter anschauen, verändert der natürlich seine Lage an der Himmelskugel ständig und hier siehst du einmal, wie das innerhalb von zwei Stunden variiert: Azimut und Höhe h. Ja: So weit, so gut. Aber Höhe und Azimut sind beide vom Beobachtungsort abhängig. Du siehst das: Wir müssen hier die Länge und die Breite unbedingt angeben. Wenn wir das zum Beispiel in Berlin machen zur selben Zeit, gibt es ganz andere Werte für Azimut und Höhe. Also: Das ist zwar ein sehr einfaches System, hat aber Nachteile, wie du dir hier vorstellen kannst, und diese Nachteile sollen möglichst vermieden werden. Man möchte ja schließlich Publikationen haben, die etwas gültiger sind als für einen ganz bestimmten Ort, und dieses System schauen wir uns mal in der folgenden Szene an. Dieses System wird die Grundlage für viele astronomische Publikationen sein. Nun also zum rotierenden Äquatorsystem, dessen Koordinaten unabhängig vom Beobachtungsort und der Beobachtungszeit sind und das durch Kippen des Horizontsystems aus demselben hervorgeht. Vorab benötigen wir noch einen Punkt am Firmament. Und zwar den Frühlingspunkt. Sehen wir uns mal in dieser Darstellung die näheren Informationen dazu an: Wir beachten den Himmelsäquator und die scheinbare Bahn der Sonne. Und genau der Punkt, in dem sich die Sonne im Moment des Frühlingsanfangs befindet: dieser Punkt heißt Frühlingspunkt und der definiert einen festen Punkt am Firmament. Nun wollen wir auch im rotierenden Äquatorsystem einen Stern beobachten - wir sehen das hier - und es sind wieder zwei Koordinaten, die die Position eines Sterns angeben. Das ist einmal die Rektaszension. Rektaszension wird mit Alpha bezeichnet und das ist der Abstand des Fußpunktes eines Sterns auf dem Himmelsäquator und zwar zwischen dem Stundenkreis des Sterns und dem Frühlingspunkt. Und aus Gründen der Zweckmäßigkeit wird die Stundenzählung hier von Westen nach Osten gemacht. Und die entsprechenden Werte für die Rektaszensionen liegt dann zwischen 0 Stunden und 24 Stunden. Die zweite Koordinate ist die Deklination, Das ist die Deklination Delta und das ist der Winkel zwischen dem Himmelsäquator und dem Meridian des Sterns. Die entsprechenden Werte liegen hier zwischen -90 Grad, das ist südlich vom Himmelsäquator, und plus 90 Grad, das ist dann nördlich vom Himmelsäquator. Und als Beispiel wollen wir die Koordinaten des hellsten Sterns im Sternbild Orion ansehen, du siehst es hier, und dieser Stern trägt die Bezeichnung Rigel. Du kannst ihn hier sehr gut sehen, und wir beginnen mit der Rektaszension. Die Rektaszension Alpha wird angegeben mit 0,5 Stunden, 14 Minuten und 32,5 Sekunden. Wir können auch hier tatsächlich Sekunden ran schreiben und schließlich die Deklination: Das sind 8 Grad, hier haben wir Winkelminuten und 05,9 Winkelsekunden. Ja: Du siehst, hier ist gar keine Angabe von Beobachtungsort und Beobachtungszeit nötig. Man kann nun beide Koordinaten, nämlich vom Horizontsystem ins rotierende Äquatorsystem umrechnen, das sind recht komplizierte Formeln, und da muss ein wenig mehr Information rein fließen. Das können wir uns hier jetzt in diesem Augenblick nicht weiter leisten. Uns fehlt einfach die Zeit dazu. Ja (Zusammenfassung): wir haben heute ganz kurz über zwei astronomische Koordinatensysteme, das Horizontsystem und das rotierende Äquatorsystem, beschäftigt und du kannst mit Hilfe von astronomischen Publikationen, mit Sternenkarten, diese Werte raussuchen und sie, falls du mit einem Fernrohr den Himmel beobachtest, dort wieder finden und auch natürlich die entsprechenden Sterne. Ja, das war es. Ich hoffe, dir hat es ein wenig Spaß gemacht und vielleicht sehen wir uns bald wieder bei einem Video von Dr. Psi. Tschüss.

2 Kommentare
  1. Hallo Naniene,

    hier ist die weitergeleitete Antwort des Tutors.

    Es ist üblich, den Winkel (Azimut) vom Südpunkt aus bis zum Schnittpunkt des Vertikalkreises eines Gestirns
    mit dem Horizont in Richtung Westen, Norden und Osten zu messen. Gelegentlich wird das Azimut aber auch vom Nordpunkt aus über Osten gemessen (dies ist häufig in der Radioastronomie gebräuchlich).

    Beide Zählweisen sind also richtig, wenn der Ausgangspunkt angegeben wird.

    Ich hoffe, die Antwort stellt Dich zufrieden. Falls Du weitere Fragen hast, bitte melden.

    Dr. Psi

    Liebe Grüße aus der Redaktion.

    Von Karsten S., vor 11 Monaten
  2. Hallo, das Video ist sehr gut, ich hätte nur eine Frage, wir haben in der Schule gelernt, dass man den Azimutwinkel beim Horizontsystem vom Nordpunkt aus misst und nicht vom Südpunkt (Ab Minute 3:30) . Was ist jetzt richtig?
    Danke schon mal im Voraus für eine Antwort.

    Von Naniene, vor 11 Monaten

Astronomische Koordinatensysteme Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Astronomische Koordinatensysteme kannst du es wiederholen und üben.

  • Beschreibe den Aufbau des Horizontsystems mit Hilfe einer Zeichnung.

    Tipps

    Die Erdachse ist ebenso wie die Äquatorebene geneigt.

    Himmelsnordpol und -südpol werden in Bezug auf die Äquatorebene angegeben.

    Die Horizontebene beschreibt die Position des Beobachters.

    Sie wird mit den Begriffen Zenit und Nadir in Verbindung gesetzt.

    Lösung

    Da die Erdachse geneigt ist, sind Äquator- und Horizontebene im Horizontsystem gegeneinander geneigt.

    In Bezug auf die Äquatorebene spricht man von Himmelsnordpol und Himmelssüdpol. In Bezug auf die Horizontebene sind die Begriffe Zenit und Nadir wichtige Orientierungsstellen.

  • Beschreibe die beiden Größen, die zur Positionsangabe eines Sterns im Horizontsystem verwendet werden.

    Tipps

    Finde zunächst jeweils Satzanfang und Satzende.

    Jeder Satz besteht aus zwei Satzteilen.

    Die Höhe gibt an, wie weit der Beobachter den Kopf nach oben neigen muss, um den Stern zu sehen.

    Das Azimut gibt die Richtung an, in die der Beobachter schauen muss, um den Stern zu sehen.

    Lösung

    Im Horizontsystem gibt man die Koordinaten eines Sterns mit Hilfe von zwei Winkeln an. Nur eine Koordinate reicht zur Positionsangabe nicht aus. Der Beobachter kennt dann entweder nur die Höhe des Sterns oder seine (Himmels-)Richtung und sucht wahrscheinlich vergeblich.

    Die Höhe h kennzeichnet dabei, wie weit ein Stern über der Horizontebene, die bei 0° liegt, steht. Ein Stern kann sehr dicht am Horizont stehen, dann hat er eine geringe Höhe. Er kann jedoch auch sehr weit oben, also quasi über dem Kopf des Beobachters stehen. Dann hat er eine große Höhe. Die Höhe h kann somit Werte zwischen 0° (Horizont) und 90° (Zenit) annehmen.

    Das Azimut a gibt Aufschluss über die Richtung, in die der Beobachter schauen muss, um den Stern zu entdecken. Liegt der Stern in Richtung Süden, so hat er ein geringes Azimut, liegt er sehr weit im Osten, ein hohes Azimut. Das Azimut kann Werte zwischen 0° (genau Süden) bis 360° annehmen. Es wird im Uhrzeigersinn gemessen. Der Winkel wird immer größer von Süd über West zu Nord und zu Ost.

  • Vergleiche die Positionen der Sterne im Horizontsystem miteinander.

    Tipps

    Die Höhe des Horizontes beträgt 0°.

    Die Höhe des Zenits beträgt 90°.

    Das Azimut in Südrichtung beträgt 0° und erhöht sich im Uhrzeigersinn.

    Lösung

    Im Horizontsystem wird zum einen für jeden Stern eine Höhe festgelegt. Die Höhe wird als Winkel angegeben und beschreibt in Bezug auf die Horizontebene die Lage des Sterns. Liegt der Stern dicht an der Horizontebene (in der Zeichnung verdeutlicht durch die schwarze geschwungene Linie), so steht er tief. Er schließt mit der Horizontebene einen kleinen Winkel ein.

    Die Höhe der Sterne sortiert sich also wie folgt (beginnend mit dem kleinsten Winkel): (5) - (2) - (4) - (1) - (3).

    Im Horizontsystem muss außerdem die Richtung angegebenen werden, in die der Beobachter schaut. Dies bezeichnet man als Azimut und ist ebenfalls ein Winkel. Das Azimut von 0° liegt genau in Südrichtung, je weiter ein Stern im Uhrzeigersinn vom Süden entfernt ist, desto größer ist sein Azimut. Da sich der Beobachter einmal komplett im Kreis drehen kann, besitzen Sterne in Ostrichtung darüber hinaus ein hohes Azimut, obwohl sie sehr dicht an Sternen mit einem kleinen Azimut liegen. Dies sieht man in der Abbildung gut: Die Sterne liegen relativ dicht, unterscheiden sich jedoch stark in dem genannten Winkel.

    Das Azimut der Sterne sortiert sich dabei wie folgt (beginnende mit dem kleinsten Winkel): (3) - (4) - (5) - (1) - (2).

  • Beurteile die folgenden Aussagen zum rotierenden Äquatorsystem.

    Tipps

    Welche Farbe hat der Himmelsäquator in der Abbildung?

    Welches wichtige Ereignis markiert der 21. März in der Abbildung?

    Der blaue Pfeil in der Abbildung zeigt die Rektaszension.

    Der rote Pfeil kennzeichnet die Deklination.

    Welches astronomische Koordinatensystem hast du noch kennengelernt?

    Lösung

    Das rotierende Äquatorsystem ist im Gegensatz zum Horizontsystem unabhängig vom Beobachter. Wendet man dieses System an, so sind die Positionsangaben für einen Himmelskörper allgemein gültig, egal wo und wann die Beobachtung stattgefunden hat.

    Im rotierenden Äquatorsystem müssen für die Positionsangabe eins Himmelskörpers tatsächlich nur noch zwei Koordinaten angegeben werden: Die Rektaszension in Stunden/Minuten/Sekunden sowie die Deklination in Grad von -90° (südlich) zu +90° (nördlich).

  • Gib an, welche Daten zur genauen Positionsbestimmung im Horizontsystem notwendig sind.

    Tipps

    Zu den Koordinaten müssen folgende Informationen ergänzt werden: Wann und wo wurde das Objekt beobachtet?

    Lösung

    Koordinaten im Horizontsystem sind ohne weitere Zusatzinformationen nicht aussagekräftig. Das ist so, weil die Koordinaten von der Position des Beobachters abhängen.

    Darum muss geklärt sein, wo der Beobachter stand. Je nach seinem Ort, also der geografischen Länge und Breite, verändert sich die Lage der Horizontebene.

    Die Position der Himmelskörper ändert sich außerdem mit der Zeit. Deshalb müssen auch das Datum sowie die Uhrzeit angegeben werden. Sonst sucht man den Himmelskörper zwar am richtigen Ort, aber unter Umständen zur völlig falschen Zeit.

  • Vergleiche die Position von zwei Sternen miteinander.

    Tipps

    Welches astronomische Koordinatensystem wird hier verwendet?

    Welchen Stundenwert kann die Rektaszension maximal erreichen?

    Wie kann man eine Stunde demnach in Grad umrechnen?

    Welchem Anteil einer Stunde entspricht die Differenz der beiden Rektaszensionswerte?

    Lösung

    Die Rektaszension ist eine der beiden Koordinaten, mit der die Position von Himmelskörpern im rotierenden Äquatorsystem erfolgt. Sie beschreibt den Abstand des Himmelskörpers zum Frühlingspunkt, ausgehend vom Fußpunkt des Himmelskörpers auf den Himmelsäquator.

    Die Rektaszension wird häufig nicht in Grad, sondern in Stunden/Minuten/Sekunden angegeben.

    Die Rektaszension kann Werte zwischen 0 Stunden und 24 Stunden annehmen. Diese Werte verteilen sich gemäß der Definition der Rektaszension auf insgesamt 360°. Einer Stunde entspricht damit ein Wert von 15°.

    Die Differenz der beiden genannten Rektaszensionen beträgt 20 Minuten. Die beiden Sterne liegen somit eine drittel Stunde auseinander, dies entspricht genau 5°.