Astronomische Koordinatensysteme
Um sich am Sternenhimmel zu orientieren, benötigt man das Horizontsystem oder Äquatorsystem. Im Horizontsystem zeigen die Höhe und das Azimut die genaue Position eines Himmelskörpers am Nachthimmel an. Im Äquatorsystem hingegen arbeiten die Deklination und die Rektaszension, um die Position zu bestimmen. Wenn dich das Thema interessiert, findest du im nächsten Text weitere Informationen dazu!
- Wie kann man sich am Sternenhimmel orientieren?
- Was ist das Horizontsystem?
- Astronomische Koordinatensysteme – Zusammenfassung zum Horizontsystem

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Das Sonnensystem

Astrophysik – was ist was?

Erde und Mond

Geburt des Sonnensystems

Sternbilder

Was ist ein Lichtjahr?

Astronomische Koordinatensysteme

Der Mars – unser Nachbar im All

Entstehung des Mondes

Oberfläche des Mondes

Innerer Aufbau des Mondes

Ebbe und Flut

Scheinbare Mondgröße – Rotation und Libration

Planeten und ihre Bewegung

Planeten und ihre Trabanten – erdähnliche Planeten

Planeten und ihre Trabanten – jupiterähnliche Planeten
Astronomische Koordinatensysteme Übung
-
Beschreibe den Aufbau des Horizontsystems mit Hilfe einer Zeichnung.
TippsDie Erdachse ist ebenso wie die Äquatorebene geneigt.
Himmelsnordpol und -südpol werden in Bezug auf die Äquatorebene angegeben.
Die Horizontebene beschreibt die Position des Beobachters.
Sie wird mit den Begriffen Zenit und Nadir in Verbindung gesetzt.
LösungDa die Erdachse geneigt ist, sind Äquator- und Horizontebene im Horizontsystem gegeneinander geneigt.
In Bezug auf die Äquatorebene spricht man von Himmelsnordpol und Himmelssüdpol. In Bezug auf die Horizontebene sind die Begriffe Zenit und Nadir wichtige Orientierungsstellen.
-
Beschreibe die beiden Größen, die zur Positionsangabe eines Sterns im Horizontsystem verwendet werden.
TippsFinde zunächst jeweils Satzanfang und Satzende.
Jeder Satz besteht aus zwei Satzteilen.
Die Höhe gibt an, wie weit der Beobachter den Kopf nach oben neigen muss, um den Stern zu sehen.
Das Azimut gibt die Richtung an, in die der Beobachter schauen muss, um den Stern zu sehen.
LösungIm Horizontsystem gibt man die Koordinaten eines Sterns mit Hilfe von zwei Winkeln an. Nur eine Koordinate reicht zur Positionsangabe nicht aus. Der Beobachter kennt dann entweder nur die Höhe des Sterns oder seine (Himmels-)Richtung und sucht wahrscheinlich vergeblich.
Die Höhe h kennzeichnet dabei, wie weit ein Stern über der Horizontebene, die bei 0° liegt, steht. Ein Stern kann sehr dicht am Horizont stehen, dann hat er eine geringe Höhe. Er kann jedoch auch sehr weit oben, also quasi über dem Kopf des Beobachters stehen. Dann hat er eine große Höhe. Die Höhe h kann somit Werte zwischen 0° (Horizont) und 90° (Zenit) annehmen.
Das Azimut a gibt Aufschluss über die Richtung, in die der Beobachter schauen muss, um den Stern zu entdecken. Liegt der Stern in Richtung Süden, so hat er ein geringes Azimut, liegt er sehr weit im Osten, ein hohes Azimut. Das Azimut kann Werte zwischen 0° (genau Süden) bis 360° annehmen. Es wird im Uhrzeigersinn gemessen. Der Winkel wird immer größer von Süd über West zu Nord und zu Ost.
-
Vergleiche die Positionen der Sterne im Horizontsystem miteinander.
TippsDie Höhe des Horizontes beträgt 0°.
Die Höhe des Zenits beträgt 90°.
Das Azimut in Südrichtung beträgt 0° und erhöht sich im Uhrzeigersinn.
LösungIm Horizontsystem wird zum einen für jeden Stern eine Höhe festgelegt. Die Höhe wird als Winkel angegeben und beschreibt in Bezug auf die Horizontebene die Lage des Sterns. Liegt der Stern dicht an der Horizontebene (in der Zeichnung verdeutlicht durch die schwarze geschwungene Linie), so steht er tief. Er schließt mit der Horizontebene einen kleinen Winkel ein.
Die Höhe der Sterne sortiert sich also wie folgt (beginnend mit dem kleinsten Winkel): (5) - (2) - (4) - (1) - (3).
Im Horizontsystem muss außerdem die Richtung angegebenen werden, in die der Beobachter schaut. Dies bezeichnet man als Azimut und ist ebenfalls ein Winkel. Das Azimut von 0° liegt genau in Südrichtung, je weiter ein Stern im Uhrzeigersinn vom Süden entfernt ist, desto größer ist sein Azimut. Da sich der Beobachter einmal komplett im Kreis drehen kann, besitzen Sterne in Ostrichtung darüber hinaus ein hohes Azimut, obwohl sie sehr dicht an Sternen mit einem kleinen Azimut liegen. Dies sieht man in der Abbildung gut: Die Sterne liegen relativ dicht, unterscheiden sich jedoch stark in dem genannten Winkel.
Das Azimut der Sterne sortiert sich dabei wie folgt (beginnende mit dem kleinsten Winkel): (3) - (4) - (5) - (1) - (2).
-
Beurteile die folgenden Aussagen zum rotierenden Äquatorsystem.
TippsWelche Farbe hat der Himmelsäquator in der Abbildung?
Welches wichtige Ereignis markiert der 21. März in der Abbildung?
Der blaue Pfeil in der Abbildung zeigt die Rektaszension.
Der rote Pfeil kennzeichnet die Deklination.
Welches astronomische Koordinatensystem hast du noch kennengelernt?
LösungDas rotierende Äquatorsystem ist im Gegensatz zum Horizontsystem unabhängig vom Beobachter. Wendet man dieses System an, so sind die Positionsangaben für einen Himmelskörper allgemein gültig, egal wo und wann die Beobachtung stattgefunden hat.
Im rotierenden Äquatorsystem müssen für die Positionsangabe eins Himmelskörpers tatsächlich nur noch zwei Koordinaten angegeben werden: Die Rektaszension in Stunden/Minuten/Sekunden sowie die Deklination in Grad von -90° (südlich) zu +90° (nördlich).
-
Gib an, welche Daten zur genauen Positionsbestimmung im Horizontsystem notwendig sind.
TippsZu den Koordinaten müssen folgende Informationen ergänzt werden: Wann und wo wurde das Objekt beobachtet?
LösungKoordinaten im Horizontsystem sind ohne weitere Zusatzinformationen nicht aussagekräftig. Das ist so, weil die Koordinaten von der Position des Beobachters abhängen.
Darum muss geklärt sein, wo der Beobachter stand. Je nach seinem Ort, also der geografischen Länge und Breite, verändert sich die Lage der Horizontebene.
Die Position der Himmelskörper ändert sich außerdem mit der Zeit. Deshalb müssen auch das Datum sowie die Uhrzeit angegeben werden. Sonst sucht man den Himmelskörper zwar am richtigen Ort, aber unter Umständen zur völlig falschen Zeit.
-
Vergleiche die Position von zwei Sternen miteinander.
TippsWelches astronomische Koordinatensystem wird hier verwendet?
Welchen Stundenwert kann die Rektaszension maximal erreichen?
Wie kann man eine Stunde demnach in Grad umrechnen?
Welchem Anteil einer Stunde entspricht die Differenz der beiden Rektaszensionswerte?
LösungDie Rektaszension ist eine der beiden Koordinaten, mit der die Position von Himmelskörpern im rotierenden Äquatorsystem erfolgt. Sie beschreibt den Abstand des Himmelskörpers zum Frühlingspunkt, ausgehend vom Fußpunkt des Himmelskörpers auf den Himmelsäquator.
Die Rektaszension wird häufig nicht in Grad, sondern in Stunden/Minuten/Sekunden angegeben.
Die Rektaszension kann Werte zwischen 0 Stunden und 24 Stunden annehmen. Diese Werte verteilen sich gemäß der Definition der Rektaszension auf insgesamt 360°. Einer Stunde entspricht damit ein Wert von 15°.
Die Differenz der beiden genannten Rektaszensionen beträgt 20 Minuten. Die beiden Sterne liegen somit eine drittel Stunde auseinander, dies entspricht genau 5°.
9.385
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.226
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie