Gesetz von Gay-Lussac und absolute Temperatur

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Gesetz von Gay-Lussac und absolute Temperatur Übung
-
Gib an, warum ein abgeschlossener Ballon bei großer Hitze platzt.
TippsVersuche zunächst mit Alltagserfahrungen das Experiment zu erklären.
Beziehe das Teilchenmodell in deine Überlegungen mit ein.
LösungDie alltägliche Temperatur entspricht der mittleren Bewegungsgeschwindigkeit aller Teilchen im umgebenen Gas. Mit steigender Temperatur vergrößert sich also die kinetische Energie und auch die Geschwindigkeit der Teilchen.
Die Teilchen stoßen daher immer stärker gegen die Ballonhülle und drücken sie damit immer stärker in alle Richtungen auseinander.
-
Gib an, was der absolute Nullpunkt ist und warum eine niedrigere Temperatur nicht möglich ist.
TippsErkläre zunächst die dir bekannten Fachbegriffe.
LösungDer nullte Hauptsatz der Thermodynamik sagt aus, dass das Erreichen des absoluten Nullpunktes nicht möglich ist. Dies liegt daran, dass jedes Teilchen ein, wenn auch kleines, Eigenvolumen besitzt. Damit kann das Volumen weder negativ noch Null werden.
Jedoch haben Wissenschaftler es dennoch probiert und mit größtem Aufwand und viel Energie eine Temperatur von 0,000000005 K erreicht.
-
Bestimme die Temperatur des komprimierten Gases.
TippsIn der Wärmelehre wird immer mit Temperaturwerten in Kelvin gerechnet.
LösungGegeben: $T_1=20°\,C$,$~~~~$$V_1=100\,m^3$,$~~~~$$V_2=1\,m^3$
Gesucht: $T_2$ in K
Rechnung: $\dfrac{V_1}{T_1}=\frac{V_2}{T_2}$
Umstellen nach $T_2$
$T_2=\dfrac{V_2 \cdot T_1}{V_1}$
Einsetzen der Werte in der richtigen Einheit:
$T_2=\dfrac{1\,m^3 \cdot 293,15\,K}{100\,m^3}=2,93\,K$
Vorausgesetzt, das Gas ändert nicht den Aggregatzustand, müsste es auf 2,93 K abgekühlt werden, um sein Volumen so stark zu verkleinern.
-
Bestimme das Volumen derselben Gasmenge auf Erde und Sonnenoberfläche.
TippsNutze die Werte für die Normalbedingungen als $V_0$ und $T_0$.
LösungGegeben: $V_0=22,41\,L$,$~~~~$$T_{Erde}=298\,K$,$~~~~$$T_S=5778\,K$,$~~~~$$T_0=273,15\,K$
Gesucht: $V_S$ und $V_E$ in Liter
$V(T)=V_0 \cdot (1+0,003661 \frac{1}{K} \cdot (T - T_0))$
Einsetzen der Standardwerte:
$V(T)=22,41\,l \cdot (1 +0,003661 \frac{1}{K} \cdot (T - 273,15\,K))$
Für Erde und Sonne berechnen:
$V_{Erde}=22,41\,l \cdot (1+0,003661 \frac{1}{K} \cdot (T_E - 273,15\,K))$
$V_{Erde}=22,41\,l \cdot (1+0,003661 \frac{1}{K} \cdot (298\,K - 273,15\,K))=24\,\text{Liter}$
$V_{Sonne}=22,41\,l \cdot (1+0,003661 \frac{1}{K} \cdot (T_S - 273,15\,K))$
$V_{Sonne}=22,41\,l \cdot (1+0,003661 \frac{1}{K} \cdot (5778\,K - 273,15\,K))=474\,\text{Liter}$
Übrigens gilt: $0,003661= \dfrac{1}{273,15}=\frac{1}{T_0}$.
Wenn du das in die Gleichung einsetzt und umformst, kannst du sehen, dass die Gleichung äquivalent ist zu der Gleichung
$\dfrac{V(T)}{T}=\dfrac{V_0}{T_0}$
und du ebenfalls die Gleichung benutzen könntest, die du in der anderen Aufgabe verwendet hast.
Tipp: Für die Umformung musst du die Zahl 1 als Bruch schreiben 1/1 und den Bruch mit $T_0$ erweitern.
-
Nenne das Gesetz von Gay-Lussac.
TippsStelle dir die dargestellten Formeln gezeichnet in einem Diagramm vor.
$\gamma~$ ist eine Stoffkonstante.
LösungDas Gesetz von Gay-Lussac ist eines der Grundgesetze zum Verhalten von Gasen. Zusammen mit dem Gesetz von Amontons und dem Gesetz von Boyle und Mariotte ist es die Grundlage für die Zustandsgleichung des idealen Gases.
Gay-Lussac (isobare Zustandsänderung) $\rightarrow~~~p=\text{konstant}$
Amontons (isochore Zustandsänderung) $\rightarrow~~~V=\text{konstant}$
Boyle und Mariotte (isotherme Zustandsänderung) $\rightarrow~~~T=\text{konstant}$
-
Bestimme die Temperatur und das Volumen am absoluten Nullpunkt aus den Messwerten.
TippsEs gibt mehrere Wege zur Lösung. Einer davon ist der Phänomenologische.
Wir stellen uns die phänomenologischen Fragen:
- Wie ist die Kelvin-Skala definiert?
- Wie ist das Eigenvolumen der Gasteilchen im idealen Gas definiert?
- Was bedeutet punktförmig?
Der graphische Weg:
Wir tragen alle Werte in ein Diagramm ein und zeichnen durch diese Punkte eine Gerade.
LösungDie Kelvin-Skala ist die einzige Temperaturskala ohne negative Werte. Da sie ihren tiefsten Wert am absoluten Nullpunkt aufweist. Damit beträgt die Temperatur am absoluten Nullpunkt Null Kelvin.
Eine kurze Anmerkung, da dies häufig falsch gemacht wird: Es heißt nur Kelvin nicht Grad-Kelvin.
Im Modell des idealen Gases besitzen die Teilchen keine Ausdehnung. Demnach ist ihr Volumen am absoluten Nullpunkt ebenfalls Null.
Es gibt mehrere Wege zur Lösung der Aufgabe.
Einer davon ist der Phänomenologische:
- Wir Stellen uns die phänomenologischen Fragen: Wie ist die Kelvin-Skala definiert?
- Wie ist das Eigenvolumen der Gasteilchen im idealen Gas definiert?
- Was bedeutet punktförmig?
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie