Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Erstellen von s-t- und v-t-Diagrammen für Bewegungen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 51 Bewertungen
Die Autor*innen
Avatar
Philip Rupp
Erstellen von s-t- und v-t-Diagrammen für Bewegungen
lernst du in der 7. Klasse - 8. Klasse

Erstellen von s-t- und v-t-Diagrammen für Bewegungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Erstellen von s-t- und v-t-Diagrammen für Bewegungen kannst du es wiederholen und üben.
  • Tipps

    Bleibt die Strecke konstant, ist die Geschwindigkeit $v = 0$.

    Das Vorzeichen der Geschwindigkeit ändert sich mit der Richtung der Bewegung.

    Bewegt sich das Diagramm der Strecke auf die $x$-Achse zu, so muss die Geschwindigkeit negativ sein.

    Lösung

    In diesem $s(t)$-Diagramm liegt ein linearer Zusammenhang zwischen der Strecke und der Zeit vor. Zudem nimmt die Entfernung vom Startpunkt aus zu. Wir wissen bereits, dass eine lineare Funktion im $s(t)$-Diagramm eine konstante Funktion im zugehörigen $v(t)$-Diagramm ergibt.

    Das Vorzeichen der konstanten Funktion $v(t)$ ist an der Steigung der Funktion $s(t$) ablesbar. Ist die Steigung positiv, also vom Startpunkt weg gerichtet, ist auch die Geschwindigkeit positiv.

    Dieser Zusammenhang ist im Rahmen dieser Aufgabe gesucht.

    Ist die Bewegung jedoch zum Startpunkt hin gerichtet, so ergibt sich eine negative Steigung und somit eine negative Geschwindigkeit.

    Wie du siehst, kannst du an der Steigung der Funktion $s(t)$ schon einige Informationen über die Geschwindigkeit der Bewegung ablesen.

  • Tipps

    Je schneller eine Bewegung ist, desto steiler verläuft der Graph für $s(t)$.

    Ist die Geschwindigkeit konstant, so ändert sie sich nicht über die Zeit $t$.

    Lösung

    Eine Bewegung mit konstanter Geschwindigkeit sieht im $v(t)$-Diagramm anders aus als im $s(t)$-Diagramm.

    Im $v(t)$-Diagramm handelt es sich dabei um eine konstante Funktion, bei der $v(t) = v_0$ ist. Die Geschwindigkeit ändert sich also nicht mit der Zeit, sodass zu jedem Zeitpunkt $t$ die gleiche Geschwindigkeit $v_0$ vorliegt. Im Diagramm ergibt sich dann eine Gerade, die parallel zur $t$-Achse verläuft.

    Im $s(t)$-Diagramm ergibt eine konstante Geschwindigkeit eine lineare Funktion (Grafik). Die Strecke nimmt linear mit der Zeit zu. Das bedeutet, innerhalb unterschiedlicher Zeitabschnitte $t_1 = t_2$ wird dabei immer die gleiche Strecke $s_1 = s_2$ zurückgelegt. Im Diagramm ergibt sich damit eine lineare Funktion, wobei die Steigung der Funktion der Geschwindigkeit entspricht. Je schneller desto steiler. Denn dann wird eine große Strecke in kurzer Zeit zurückgelegt. Verläuft der Graph nach unten, so handelt es sich um eine negative Geschwindigkeit, also eine Bewegung auf den Startpunkt zu.

  • Tipps

    Im Stillstand gilt $s(t) = s_0$.

    Bei einer gleichförmigen Bewegung gilt $s(t) = s_0 + v \cdot t$.

    Für eine gleichmäßig beschleunigte Bewegung gilt $s(t) = s_0 + v \cdot t + \frac{1}{2} \cdot a \cdot t^2$.

    Lösung

    Wir wollen die Zusammenhänge zwischen $v(t)$- und $s(t)$-Diagrammen einmal genauer betrachten. Dazu beschreiben wir den Verlauf der Funktion $s(t)$ und weisen dieser die passende Funktion $v(t)$ zu.

    Fall 1
    Die Funktion $s(t)$ verläuft konstant. Das bedeutet, zu jedem Zeitpunkt $t$ gehört der gleiche Ort $s(t)$. Wir können sagen: Die Bewegung ist im Stillstand. Steht etwas still, dann ist die Geschwindigkeit $v=0$. Damit ist das passende $v(t)=0$ das zugehörige Diagramm.

    Fall 2
    Die Strecke nimmt linear mit der Zeit zu. Es ist $s(t) = s_0 + v \cdot t$. Bei dieser gleichförmigen Bewegung ist die Geschwindigkeit nun konstant. Für $v(t)$ gilt somit $v(t) = v = const.$ Nimmt die Strecke linear mit der Zeit ab, bewegt man sich also auf den Startpunkt zu, so ist $s(t) = s_0 - v \cdot t$. Die Geschwindigkeit muss in diesem Fall $v(t) = -v = const.$ sein.

    Fall 3
    Die Strecke nimmt parabelförmig zu. Nun gilt $ s(t) = s_0 + v \cdot t + \frac{1}{2} \cdot a \cdot t^2$. Diese Bewegung wird als gleichmäßig beschleunigte Bewegung bezeichnet. Die Geschwindigkeit nimmt mit der Zeit zu, da die Bewegung ja beschleunigt ist. Es gilt $v(t) = v_0 + a \cdot t$. Die Geschwindigkeit ist hier nun eine Gerade.

  • Tipps

    Die Steigung der Funktion $s(t)$ lässt Rückschlüsse auf die Geschwindigkeit $v(t) $ zu.

    Ist die Funktion der Geschwindigkeit konstant, so ist die Strecke eine lineare Funktion.

    Lösung

    Im gezeigten $s(t)$-Diagramm liegt der Startpunkt bei $s_0 = 0m$. Nach $t=7 min$ ist der Punkt $s(7) = 200m$ erreicht.

    Gesucht ist nun das Diagramm der Geschwindigkeit, welches diese Bewegung korrekt abbildet.

    Wie wir bereits wissen, muss man die Steigung der Funktion $s(t)$ ermitteln, um Informationen über $v(t)$ zu erhalten. Zudem handelt es sich um eine lineare Funktion der Wegstrecke, also muss die Funktion $v(t)$ konstant sein.

    In der Aufgabenstellung wird ein Diagramm gezeigt, in dem eine Strecke von $s=200m$ in der Zeit von $t = 7 min$ zurückgelegt wird. Die durchschnittliche Geschwindigkeit beträgt also $ v = \frac{s}{t} = 28,57\frac{m}{s}$.

    Beachte unbedingt die Bezeichnung der Achsen in den Diagrammen.

  • Tipps

    Wir müssen eine Bewegung nach ihrer Richtung unterscheiden.

    Bezugspunkt einer Bewegung ist immer der Startpunkt.

    Lösung

    Eine negative Geschwindigkeit hängt mit der Richtung der Bewegung und nicht mit dem Betrag der Geschwindigkeit zusammen.

    In der Grafik siehst du zwei Zwillinge, die in entgegengesetzte Richtung laufen. Max läuft nach links, Moritz (grau hinterlegt) läuft nach rechts. Beide laufen mit der gleichen, konstanten Geschwindigkeit. Der Unterschied besteht damit allein in der Richtung der Bewegung.

    Um diese Tatsache im Koordinatensystem $v(t)$ sichtbar zu machen, wird die Richtung in Form des Vorzeichens berücksichtigt werden. Max läuft in die entgegengesetzte Richtung (im Vergleich zu Moritz. Von daher wird das Vorzeichen umgekehrt, sodass wir sagen könnten : $v_{Max} = - v_{Moritz}$.

    Wie du sehen kannst, gibt das Vorzeichen der Geschwindigkeit die Richtung der Bewegung an, sodass wir unterscheiden können, in welche Richtung von einem Startpunkt aus gesehen eine Bewegung abläuft.

  • Tipps

    Die Steigung des Diagramms s(t) entspricht der Geschwindigkeit.

    Lösung

    Wie wir bereits gelernt haben, ist die Geschwindigkeit $v(t)$ äquivalent zur Steigung des Diagramms der Steigung $s(t)$.

    In diesem Beispiel haben wir nun eine Bewegung, die in mehreren Abschnitten unterschiedliche Geschwindigkeiten aufweist.

    Bereich 1) Der Bereich 1 erstreckt sich von $t=0 min$ bis $t=4 min$. In dieser Zeit liegt eine gleichmäßig, positiv beschleunigte Bewegung vor. Die Funktion $s(t)$ muss also parabelförmig steigen.

    Bereich 2) Dieser erstreckt sich von $t=4$ bis $t=5$. Die Geschwindigkeit nimmt hier gleichmäßig ab. Dieser Bereich muss im $s(t)$-Diagramm also exponentiell abnehmen.

    Bereich 3) Nach $t=5s$ bleibt die Geschwindigkeit konstant. Die Bewegung ist nun gleichförmig. Bei einer gleichförmigen Bewegung nimmt die Strecke gleichmäßig zu.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.225

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen