Erstellen von s-t- und v-t-Diagrammen für Bewegungen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Erstellen von s-t- und v-t-Diagrammen für Bewegungen Übung
-
Zeige, welche Diagramme zueinander passen.
TippsBleibt die Strecke konstant, ist die Geschwindigkeit $v = 0$.
Das Vorzeichen der Geschwindigkeit ändert sich mit der Richtung der Bewegung.
Bewegt sich das Diagramm der Strecke auf die $x$-Achse zu, so muss die Geschwindigkeit negativ sein.
LösungIn diesem $s(t)$-Diagramm liegt ein linearer Zusammenhang zwischen der Strecke und der Zeit vor. Zudem nimmt die Entfernung vom Startpunkt aus zu. Wir wissen bereits, dass eine lineare Funktion im $s(t)$-Diagramm eine konstante Funktion im zugehörigen $v(t)$-Diagramm ergibt.
Das Vorzeichen der konstanten Funktion $v(t)$ ist an der Steigung der Funktion $s(t$) ablesbar. Ist die Steigung positiv, also vom Startpunkt weg gerichtet, ist auch die Geschwindigkeit positiv.
Dieser Zusammenhang ist im Rahmen dieser Aufgabe gesucht.
Ist die Bewegung jedoch zum Startpunkt hin gerichtet, so ergibt sich eine negative Steigung und somit eine negative Geschwindigkeit.
Wie du siehst, kannst du an der Steigung der Funktion $s(t)$ schon einige Informationen über die Geschwindigkeit der Bewegung ablesen.
-
Gib an, wann eine konstante Geschwindigkeit vorliegt.
TippsJe schneller eine Bewegung ist, desto steiler verläuft der Graph für $s(t)$.
Ist die Geschwindigkeit konstant, so ändert sie sich nicht über die Zeit $t$.
LösungEine Bewegung mit konstanter Geschwindigkeit sieht im $v(t)$-Diagramm anders aus als im $s(t)$-Diagramm.
Im $v(t)$-Diagramm handelt es sich dabei um eine konstante Funktion, bei der $v(t) = v_0$ ist. Die Geschwindigkeit ändert sich also nicht mit der Zeit, sodass zu jedem Zeitpunkt $t$ die gleiche Geschwindigkeit $v_0$ vorliegt. Im Diagramm ergibt sich dann eine Gerade, die parallel zur $t$-Achse verläuft.
Im $s(t)$-Diagramm ergibt eine konstante Geschwindigkeit eine lineare Funktion (Grafik). Die Strecke nimmt linear mit der Zeit zu. Das bedeutet, innerhalb unterschiedlicher Zeitabschnitte $t_1 = t_2$ wird dabei immer die gleiche Strecke $s_1 = s_2$ zurückgelegt. Im Diagramm ergibt sich damit eine lineare Funktion, wobei die Steigung der Funktion der Geschwindigkeit entspricht. Je schneller desto steiler. Denn dann wird eine große Strecke in kurzer Zeit zurückgelegt. Verläuft der Graph nach unten, so handelt es sich um eine negative Geschwindigkeit, also eine Bewegung auf den Startpunkt zu.
-
Zeige die Zusammenhänge zwischen Geschwindigkeit und Wegstrecke einer Bewegung.
TippsIm Stillstand gilt $s(t) = s_0$.
Bei einer gleichförmigen Bewegung gilt $s(t) = s_0 + v \cdot t$.
Für eine gleichmäßig beschleunigte Bewegung gilt $s(t) = s_0 + v \cdot t + \frac{1}{2} \cdot a \cdot t^2$.
LösungWir wollen die Zusammenhänge zwischen $v(t)$- und $s(t)$-Diagrammen einmal genauer betrachten. Dazu beschreiben wir den Verlauf der Funktion $s(t)$ und weisen dieser die passende Funktion $v(t)$ zu.
Fall 1
Die Funktion $s(t)$ verläuft konstant. Das bedeutet, zu jedem Zeitpunkt $t$ gehört der gleiche Ort $s(t)$. Wir können sagen: Die Bewegung ist im Stillstand. Steht etwas still, dann ist die Geschwindigkeit $v=0$. Damit ist das passende $v(t)=0$ das zugehörige Diagramm.Fall 2
Die Strecke nimmt linear mit der Zeit zu. Es ist $s(t) = s_0 + v \cdot t$. Bei dieser gleichförmigen Bewegung ist die Geschwindigkeit nun konstant. Für $v(t)$ gilt somit $v(t) = v = const.$ Nimmt die Strecke linear mit der Zeit ab, bewegt man sich also auf den Startpunkt zu, so ist $s(t) = s_0 - v \cdot t$. Die Geschwindigkeit muss in diesem Fall $v(t) = -v = const.$ sein.Fall 3
Die Strecke nimmt parabelförmig zu. Nun gilt $ s(t) = s_0 + v \cdot t + \frac{1}{2} \cdot a \cdot t^2$. Diese Bewegung wird als gleichmäßig beschleunigte Bewegung bezeichnet. Die Geschwindigkeit nimmt mit der Zeit zu, da die Bewegung ja beschleunigt ist. Es gilt $v(t) = v_0 + a \cdot t$. Die Geschwindigkeit ist hier nun eine Gerade. -
Zeige das zugehörige $v(t)$-Diagramm.
TippsDie Steigung der Funktion $s(t)$ lässt Rückschlüsse auf die Geschwindigkeit $v(t) $ zu.
Ist die Funktion der Geschwindigkeit konstant, so ist die Strecke eine lineare Funktion.
LösungIm gezeigten $s(t)$-Diagramm liegt der Startpunkt bei $s_0 = 0m$. Nach $t=7 min$ ist der Punkt $s(7) = 200m$ erreicht.
Gesucht ist nun das Diagramm der Geschwindigkeit, welches diese Bewegung korrekt abbildet.
Wie wir bereits wissen, muss man die Steigung der Funktion $s(t)$ ermitteln, um Informationen über $v(t)$ zu erhalten. Zudem handelt es sich um eine lineare Funktion der Wegstrecke, also muss die Funktion $v(t)$ konstant sein.
In der Aufgabenstellung wird ein Diagramm gezeigt, in dem eine Strecke von $s=200m$ in der Zeit von $t = 7 min$ zurückgelegt wird. Die durchschnittliche Geschwindigkeit beträgt also $ v = \frac{s}{t} = 28,57\frac{m}{s}$.
Beachte unbedingt die Bezeichnung der Achsen in den Diagrammen.
-
Gib an, was eine negative Geschwindigkeit ist.
TippsWir müssen eine Bewegung nach ihrer Richtung unterscheiden.
Bezugspunkt einer Bewegung ist immer der Startpunkt.
LösungEine negative Geschwindigkeit hängt mit der Richtung der Bewegung und nicht mit dem Betrag der Geschwindigkeit zusammen.
In der Grafik siehst du zwei Zwillinge, die in entgegengesetzte Richtung laufen. Max läuft nach links, Moritz (grau hinterlegt) läuft nach rechts. Beide laufen mit der gleichen, konstanten Geschwindigkeit. Der Unterschied besteht damit allein in der Richtung der Bewegung.
Um diese Tatsache im Koordinatensystem $v(t)$ sichtbar zu machen, wird die Richtung in Form des Vorzeichens berücksichtigt werden. Max läuft in die entgegengesetzte Richtung (im Vergleich zu Moritz. Von daher wird das Vorzeichen umgekehrt, sodass wir sagen könnten : $v_{Max} = - v_{Moritz}$.
Wie du sehen kannst, gibt das Vorzeichen der Geschwindigkeit die Richtung der Bewegung an, sodass wir unterscheiden können, in welche Richtung von einem Startpunkt aus gesehen eine Bewegung abläuft.
-
Bestimme das passende $s(t)$-Diagramm.
TippsDie Steigung des Diagramms s(t) entspricht der Geschwindigkeit.
LösungWie wir bereits gelernt haben, ist die Geschwindigkeit $v(t)$ äquivalent zur Steigung des Diagramms der Steigung $s(t)$.
In diesem Beispiel haben wir nun eine Bewegung, die in mehreren Abschnitten unterschiedliche Geschwindigkeiten aufweist.
Bereich 1) Der Bereich 1 erstreckt sich von $t=0 min$ bis $t=4 min$. In dieser Zeit liegt eine gleichmäßig, positiv beschleunigte Bewegung vor. Die Funktion $s(t)$ muss also parabelförmig steigen.
Bereich 2) Dieser erstreckt sich von $t=4$ bis $t=5$. Die Geschwindigkeit nimmt hier gleichmäßig ab. Dieser Bereich muss im $s(t)$-Diagramm also exponentiell abnehmen.
Bereich 3) Nach $t=5s$ bleibt die Geschwindigkeit konstant. Die Bewegung ist nun gleichförmig. Bei einer gleichförmigen Bewegung nimmt die Strecke gleichmäßig zu.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.225
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie