Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Prozentgleichungen lösen – Anwendungsbeispiele

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 28 Bewertungen
Die Autor*innen
Avatar
Team Digital
Prozentgleichungen lösen – Anwendungsbeispiele
lernst du in der 7. Klasse - 8. Klasse

Prozentgleichungen lösen – Anwendungsbeispiele Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Prozentgleichungen lösen – Anwendungsbeispiele kannst du es wiederholen und üben.
  • Benenne die gesuchten und gegebenen Größen mithilfe der Prozentformel.

    Tipps

    In der Prozentformel $\dfrac{W}{G}=\dfrac{p}{100}$ steht

    • $G$ für den Grundwert,
    • $W$ für den Prozentwert und
    • $p$ für die Prozentzahl.

    Der Prozentsatz steht in enger Verbindung mit der Prozentzahl:

    $p\%=\dfrac{p}{100}$.

    Lösung

    In dieser Aufgabe wird von „Anzahl an Einbrechern“ gesprochen. Das ist die Einheit unserer Werte $G$ und $W$.

    • Dabei ist als Grundwert $G=40$ Einbrecher insgesamt gegeben.
    • Die Anzahl an Verbrechern, die ein Selfie machen, ist in dieser Aufgabe unbekannt. Somit ist der Prozentwert $W$ gesucht.
    • In der Aufgabenbeschreibung wird uns außerdem der Prozentsatz $p\%=5\,\%$ gegeben. Das ist der Anteil der Einbrecher, die ein Selfie machen, in Prozent. Die zugehörige Prozentzahl ist $p=5$.
    Als Erstes setzen wir die gegebenen Werte für $G$ und $p$ in die Prozentformel $\frac{W}{G}=\frac{p}{100}$ ein:

    $\begin{array}{lll} \frac{W}{40} &=\frac{5}{100} &\vert \cdot 40 \\ \\ W &=\frac{5}{100}\cdot 40 & \\ \\ W &=\frac{5\cdot 4}{10} & \\\\ W &=2& \end{array}$

    Du erhältst als Lösung den Prozentwert $W=2$ Einbrecher, die ein Selfie machen.

    Noch ein paar nützliche Hinweise:

    Die Prozentformel $\dfrac{W}{G}=\dfrac{p}{100}$ brauchst du meistens im Zusammenhang mit Textaufgaben. Für die beiden Werte, Grundwert $G$ und Prozentwert $W$, gilt:

    • Der Grundwert $G$ und der Prozentwert $W$ haben immer dieselbe Einheit. Zum Beispiel: Anzahl von Menschen, oder Preis in Euro, oder Länge in Metern, ...
    • Der Prozentwert $W$ ist ein Anteil vom Grundwert $G$. Zum Beispiel ist $G=40$ Menschen und $W=19$ Menschen, die Männer sind.
    Bei der Unterscheidung von Prozentzahl $p$ und Prozentsatz $p\%$ musst du besonders aufpassen:
    • In Textaufgaben wird meistens vom Prozentsatz $p\%$ gesprochen oder du musst ihn im Antwortsatz angeben.
    • Beim Rechnen brauchst du aber die Prozentzahl $p$. Falls du nicht weißt, weshalb, versuche einmal $36~[\text{Meter}] \cdot 25\,\%$ zu berechnen. Der Stolperstein liegt im $\%$-Zeichen. Ersetzt du aber $p\%$ durch $\frac{p}{100}$, hier also $25\%=\frac{25}{100}$, kommst du zu:
    $\begin{array}{ll} 36~[\text{Meter}] \cdot 25\,\% &=36~[\text{Meter}] \cdot \frac{25}{100} \\ &= 36~[\text{Meter}] \cdot \frac{1}{4} \\ &= \frac{36}{4}~[\text{Meter}] \\ &= 9~[\text{Meter}] \end{array}$

  • Vervollständige den Lösungsweg mit den fehlenden Größen aus der Prozentformel.

    Tipps

    Multiplizierst du die Formel $\frac{W}{G} = \frac{p}{100}$ auf beiden Seiten mit $100$, dann erhältst du:

    $\frac{W}{G} \cdot 100 = p$.

    Lösung

    In der Aussage $6$ von $20$ Einbrechern sind die gegebenen Größen $G=20$ Einbrecher insgesamt sowie $W=6$ Einbrecher, die Hundeklappen benutzen, versteckt.

    Gefragt wird nach dem Prozentsatz $p\%=?$

    Wir setzen in unsere Prozentformel $\frac{W}{G}=\frac{p}{100}$ die gegebenen Größen $G$ und $W$ ein und multiplizieren auf beiden Seiten mit $100$.

    $\begin{array}{rll} \frac{6}{20} &=\frac{p}{100} &\vert \cdot 100 \\ \frac{6}{20}\cdot 100 &=p &\\ 6 \cdot 5 &=p &\\ 30 &=p& \end{array}$

    Nun haben wir die Prozentzahl $p=30$ berechnet. Gesucht ist jedoch der Prozentsatz! Diese Umwandlung ist nicht schwer: Aus $p=30$ machen wir ganz einfach $p\%=30\,\%$.

    Wir haben also herausgefunden, dass $30\,\%$ aller Einbrecher durch Hundeklappen in Häuser zu gelangen versuchen.

    Die andere Rechnung verläuft analog.

  • Berechne die übrigen Megabyte Datenvolumen mithilfe der Prozentformel.

    Tipps

    Wenn Ben $79\,\%$ seines monatlichen Volumens schon verbraucht hat, wie viel Prozent bleiben ihm dann noch übrig?

    Den Prozentsatz $p\%$ darfst du nicht in die Prozentformel $\frac{W}{G}=\frac{p}{100}$ einsetzen. Durch Wegnehmen des Prozentzeichens machst du aus $p\%$ aber ganz leicht die Prozentzahl $p$. Die darfst du in die Formel einsetzen.

    Lösung

    Gegeben:

    • $G=1500$ Megabyte insgesamt und
    • $p\%=100\,\%-79\,\%=21\,\%$ verbleibender Anteil an Megabyte in Prozent
    Gesucht:
    • Prozentwert $W=?$ verbleibender Anteil an Megabyte
    Zum Rechnen brauchen wir für die Prozentformel $\frac{W}{G}=\frac{p}{100}$ nicht $p\%$, sondern $p$. Daher wandeln wir $p\%=21\,\%$ in die zugehörige Prozentzahl $p=21$ um.

    Jetzt setzen wir die gegebenen Größen $G$ und $p$ in die Formel ein:

    $\begin{array}{rcll} \dfrac{W}{1500} &=&\dfrac{21}{100} &\vert \cdot 1500 \\ W &=&\dfrac{21}{100}\cdot 1500 &\\ W &=&21 \cdot 15 &\\ W &=&315& \end{array}$

    Wir haben also berechnet, dass Ben für diesen Monat nur noch $315$ Megabyte übrig bleiben.

  • Bestimme die Zutatenmengen mithilfe der Prozentformel.

    Tipps

    Du solltest mit den Eiern anfangen!

    Wenn du die Prozentzahl zur Anpassung der Eiermenge herausgefunden hast: Was könnte es bedeuten, dass Marie und Jimmy die übrigen Zutatenmengen im gleichen Verhältnis anpassen möchten?

    Muss die Prozentzahl bei der Anpassung der Mehl- und Buttermengen kleiner, gleich oder größer sein als bei der Anpassung der Eiermenge?

    Frage dich zu jeder Zutat einzeln, welche Größen gegeben sind. Setze diese Werte dann in die Prozentformel ein und stelle sie anschließend nach der unbekannten Größe um.

    $\frac{W}{G} = \frac{p}{100}$

    Lösung

    Eier:

    Wir starten zunächst mit den Eiern, da hier schon $G$ und $W$ bekannt sind.

    Gegeben:

    • $G=5$ Eier im ursprünglichen Rezept und
    • $W=3$ Eier, welche im angepassten Rezept verwendet werden sollen
    Gesucht:
    • Prozentzahl $p=?$
    In unsere Prozentformel $\frac{W}{G}=\frac{p}{100}$ setzen wir die gegebenen Größen $G$ und $W$ ein und multiplizieren auf beiden Seiten mit $100$:

    $\begin{array}{rcll} \frac{3}{5} &=&\frac{p}{100} &\vert \cdot 100 \\ \frac{3}{5}\cdot 100 &=&p &\\ 3 \cdot 20 &=&p &\\ 60 &=&p& \end{array}$

    Nun haben wir die Prozentzahl $p=60$ berechnet. Die erste Zeile Eier kann somit vollständig ausgefüllt werden.

    $~$

    Mehl und Butter:

    Da die Mehl-, Butter- und Zuckermengen im gleichen Verhältnis wie die Eier angepasst werden sollen, verwenden wir für die folgenden Mengenanpassungen dieselbe Prozentzahl $p=60$.

    Gegeben:

    • $G=250~\text{g}$ Mehl bzw. Butter im ursprünglichen Rezept und
    • $p=60$
    Gesucht:
    • Prozentwert $W=?~\text{g}$ Mehl bzw. Butter im angepassten Rezept
    Wir setzen in die Prozentformel $\frac{W}{G}=\frac{p}{100}$ die gegebenen Größen $G$ und $p$ ein und multiplizieren auf beiden Seiten mit $G=250$:

    $\begin{array}{rcll} \frac{W}{250} &=&\frac{60}{100} &\vert \cdot 250 \\ W &=&\frac{60}{100}\cdot 250 &\\ W &=&\frac{6}{1}\cdot 25 &\\ W &=&6\cdot 25 & \\ W &=&150 & \end{array}$

    $~$

    Zucker:

    Da die Mehl-, Butter- und Zuckermengen im gleichen Verhältnis wie die Eier angepasst werden sollen, verwenden wir für die folgenden Mengenanpassungen dieselbe Prozentzahl $p=60$.

    Gegeben:

    • $G=150~\text{g}$ Zucker im ursprünglichen Rezept und
    • $p=60$
    Gesucht:
    • Prozentwert $W=?~\text{g}$ Zucker im angepassten Rezept
    Die Rechnung für die Anpassung der Zuckermenge verläuft analog mit dem Ergebnis $W=90$.

  • Entscheide, welche Umformungen zu den jeweiligen Formeln zur Prozentrechnung passen.

    Tipps

    Die Prozentformel

    $\dfrac{W}{G}=\dfrac{p}{100}$

    kann mithilfe von Äquivalenzumformungen nach den einzelnen Größen $G$, $W$ und $p$ aufgelöst werden.

    In der Prozentformel $\dfrac{W}{G}=\dfrac{p}{100}$ gilt:

    • $G$ steht für den Grundwert,
    • $W$ für den Prozentwert und
    • $p$ für die Prozentzahl.

    Das Wort Prozent (lat.: „pro centum“) heißt frei übersetzt „von hundert“ oder auch „Hundertstel“.

    Der Ausdruck „fünf Prozent“ ($5\,\%$) heißt demnach „fünf von hundert“ oder „fünf Hundertstel“, was uns auch als Bruch $\frac{5}{100}$ bekannt ist.

    Die Prozentformel $\dfrac{W}{G}=\dfrac{p}{100}$ lässt sich mittels Multiplikation über Kreuz in die Form $W \cdot 100 = p \cdot G$ umwandeln.

    Lösung

    Den Grundwert $G$ bestimmst du leicht, sobald du die Prozentformel nach $G$ umgestellt hast. Eine Möglichkeit dafür ist es, über Kreuz zu multiplizieren:

    $\begin{array}{rcll} \dfrac{W}{G}&=&\dfrac{p}{100} &\vert \ddot{\text{u}}\text{ber Kreuz multiplizieren} \\ \\ W \cdot 100 &=& p \cdot G &\vert : p \\ \\ W\cdot \dfrac{100}{p} &=& G& \end{array}$

    $~$

    Den Prozentwert $W$ erhältst du aus:

    $\begin{array}{rcll} \dfrac{W}{G}&=&\dfrac{p}{100} &\vert \cdot G \\ \\ W &=& G\cdot \dfrac{p}{100}& \end{array}$

    $~$

    Die Prozentzahl $p$ ergibt sich aus der Äquivalenzumformung:

    $\begin{array}{rcll} \dfrac{W}{G}&=&\dfrac{p}{100} &\vert \cdot 100 \\ \\ \dfrac{W}{G}\cdot 100 &=& p& \end{array}$

    $~$

    Der Prozentsatz $p\%$ ist durch $p\%=\dfrac{p}{100}$ eng mit der Prozentzahl verbunden.

    Bei der Umformulierung $G\cdot \dfrac{p}{100}=\dfrac{G\cdot p}{100}$ ändert sich übrigens der Wert des Ausdrucks nicht.

  • Bestimme für alle Mini-Textaufgaben den Grundwert, den Prozentwert sowie die Prozentzahl.

    Tipps

    Mache dir zu jeder einzelnen Aufgabe klar, welche Größen gegeben sind und welche Größe gesucht ist.

    Die Aufgaben sind unabhängig voneinander. Du kannst die Reihenfolge der Bearbeitung selbst wählen.

    Setze für jede Aufgabe von Neuem die gegebenen Größen in die Prozentformel ein und stelle die Gleichung nach derjenigen Größe um, welche dir unbekannt ist.

    Wenn der Grundwert $G$ gesucht ist, hilft es, in der Prozentformel über Kreuz zu multiplizieren. Danach kannst du die Gleichung leichter nach $G$ umstellen.

    Lösung

    Aufgabe 1: $3$ von $25$ Hühnern sind abgehauen.

    Gegeben:

    • $G=25$ Hühner ursprünglich und
    • $W=3$ Hühner, welche abgehauen sind.
    Gesucht:
    • Prozentzahl $p=?$
    Einsetzen von $G$ und $W$ in unsere Prozentformel $\frac{W}{G}=\frac{p}{100}$ ergibt:

    $\begin{array}{rcll} \frac{3}{25} &=&\frac{p}{100} &\vert \cdot 100 \\ \frac{3}{25}\cdot 100 &=&p & \\ 3 \cdot 4 &=&p & \\ 12 &=&p& \end{array}$

    Also sind $12\,\%$ der Hühner abgehauen.

    $~$

    Aufgabe 2: $18\,€$ sind $45\,\%$ meines Bargelds.

    Gegeben:

    • $W=18\,€$ Bargeld und
    • $p=45$
    Gesucht:
    • Grundwert $G=?\,€$ Bargeld insgesamt
    $W$ und $p$ in die Prozentformel $\frac{W}{G}=\frac{p}{100}$ eingesetzt führt zu:

    $\begin{array}{rcll} \frac{18}{G} &=&\frac{45}{100} &\vert \text{Multiplikation }\ddot{\text{u}}\text{ber Kreuz}\\ 1800 &=&G\cdot 45 &\vert \cdot \frac{1}{45} \\ \frac{1800}{45} &=&G & \\ \frac{200}{5} &=&G & \\ 40 &=&G & \end{array}$

    Somit sind es insgesamt $40\,€$ Bargeld.

    $~$

    Aufgabe 3: $2\,\%$ von $3500$ Chips habe ich gegessen.

    Gegeben:

    • $G=3500$ Chips ursprünglich und
    • $p=2$
    Gesucht:
    • Prozentwert $W=?$ Chips, die aufgegessen sind
    Die in unsere Prozentformel $\frac{W}{G}=\frac{p}{100}$ eingesetzten Größen $G$ und $p$ ergeben:

    $\begin{array}{rcll} \frac{W}{3500} &=&\frac{2}{100} &\vert \cdot 3500 \\ W &=&\frac{2}{100}\cdot 3500 &\\ W &=&2\cdot 35 &\\ W &=& 70& \end{array}$

    Das bedeutet, dass bereits $70$ Chips aufgegessen wurden.

    $~$

    Aufgabe 4: $60$ von $3000$ Katzen sind grau.

    Gegeben:

    • $G=3000$ Katzen insgesamt und
    • $W=60$ Katzen, die grau sind.
    Gesucht:
    • Prozentzahl $p=?$
    Das Einsetzen von $G$ und $W$ in die Prozentformel $\frac{W}{G}=\frac{p}{100}$ führt zu der Rechnung:

    $\begin{array}{rcll} \frac{60}{3000} &=&\frac{p}{100} &\vert \cdot 100 \\ \frac{60}{3000}\cdot 100 &=&p & \\ \frac{60}{30} &=&p & \\ 2 &=&p& \end{array}$

    Nur $2\,\%$ der Katzen sind grau.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.323

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.943

Lernvideos

37.093

Übungen

34.339

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden