Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Grenzwertsätze für Folgen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 9 Bewertungen
Die Autor*innen
Avatar
Giuliano Murgo
Grenzwertsätze für Folgen
lernst du in der 11. Klasse - 12. Klasse

Grenzwertsätze für Folgen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Grenzwertsätze für Folgen kannst du es wiederholen und üben.
  • Ergänze die Aussagen über die Grenzwertsätze.

    Tipps

    Die Grenzwertsätze behandeln die vier Grundrechenarten.

    Auch bei Grenzwerten gelten dieselben Regeln für die Division.

    Lösung

    Um bei Folgen den Grenzwert ohne Tabellen oder Graphen zu berechnen, gibt es Grenzwertsätze.

    Für diese müssen die beiden Folgen $a_n$ und $b_n$ konvergent sein. Es gilt somit $\lim\limits_{n \to \infty}a_n=a$ und $\lim\limits_{n \to \infty}b_n=b$. Dies sind die Grenzwertsätze:

    1. $\lim\limits_{n \to \infty}(a_n±b_n)=\lim\limits_{n \to \infty}a_n±\lim\limits_{n \to \infty}b_n=a±b$
    2. $\lim\limits_{n \to \infty}(a_n \cdot b_n)=\lim\limits_{n \to \infty}a_n \cdot \lim\limits_{n \to \infty}b_n=a \cdot b$
    3. Hier muss zusätzlich noch gelten, dass $b_n≠0$ und $b≠0$ ist. Denn weder der Grenzwert noch ein Glied der Folge darf gleich 0 sein, da ansonsten durch 0 geteilt werden würde. Dies ist bekannterweise nicht erlaubt und der Grenzwert für die Division lautet: $\lim\limits_{n \to \infty} \left(\frac{a_n}{b_n} \right)=\frac{\lim\limits_{n \to \infty}a_n}{\lim\limits_{n \to \infty}b_n}=\frac{a}{b}$.
  • Berechne den Grenzwert der Folge $f_n$.

    Tipps

    Um die Grenzwertsätze anwenden zu können, müssen sowohl im Zähler als auch im Nenner eine konvergente Folge stehen.

    Die Folgenglieder im Nenner und auch der Grenzwert der Folge im Nenner dürfen nicht 0 sein.

    Mache dir klar: Welche Grenzwertsätze werden jeweils angewendet?

    Lösung

    Um Grenzwerte von Folgen zu berechnen, kannst du die Grenzwertsätze für konvergente Folgen $a_n$ mit dem Grenzwert $a$ und $b_n$ mit dem Grenzwert $b$ verwenden:

    1. $\lim\limits_{n \to \infty}(a_n±b_n)=\lim\limits_{n \to \infty}a_n±\lim\limits_{n \to \infty}b_n=a±b$
    2. $\lim\limits_{n \to \infty}(a_n \cdot b_n)=\lim\limits_{n \to \infty}a_n \cdot \lim\limits_{n \to \infty}b_n=a \cdot b$
    3. Hier muss zusätzlich noch gelten, dass $b_n≠0$ und $b≠0$: $\lim\limits_{n \to \infty} \left(\frac{a_n}{b_n} \right)=\frac{\lim\limits_{n \to \infty}a_n}{\lim\limits_{n \to \infty}b_n}=\frac{a}{b}$
    Am Beispiel der Folge $f_n=\frac{n^2-1}{2n^2+1}$:

    $\begin{align*} \lim\limits_{n \to \infty} \left( \frac{n^2-1}{2n^2+1} \right)&= \lim\limits_{n \to \infty} \left( \frac {\frac{1}{n^2}(n^2-1)}{\frac{1}{n^2}(2n^2+1)} \right) \\ &= \lim\limits_{n \to \infty} \left( \frac{1-\frac{1}{n^2}}{2+\frac{1}{n^2}} \right)\\ &= \frac {\lim\limits_{n \to \infty} \left( 1-\frac{1}{n^2} \right) } {\lim\limits_{n \to \infty} \left( 2+\frac{1}{n^2} \right)} \\ &=\frac{\lim\limits_{n \to \infty}1-\lim\limits_{n \to \infty}\frac{1}{n^2}}{\lim\limits_{n \to \infty}2+\lim\limits_{n \to \infty}\frac{1}{n^2}}\\ &=\frac{1-0}{2+0}=\frac{1}{2} \end{align*}$

  • Erkläre, welcher Grenzwertsatz verwendet wird und gib den Grenzwert an.

    Tipps
    1. $\lim\limits_{n \to \infty}(a_n±b_n)=\lim\limits_{n \to \infty}a_n±\lim\limits_{n \to \infty}b_n=a±b$: Summenfolge (SF) und Differenzenfolge (DF)
    2. $\lim\limits_{n \to \infty}(a_n \cdot b_n)=\lim\limits_{n \to \infty}a_n \cdot \lim\limits_{n \to \infty}b_n=a \cdot b$: Produktfolge (PF)
    3. Hier muss zusätzlich noch gelten, dass $b_n≠0$ und $b≠0$: $\lim\limits_{n \to \infty} \left(\frac{a_n}{b_n} \right)=\frac{\lim\limits_{n \to \infty}a_n}{\lim\limits_{n \to \infty}b_n}=\frac{a}{b}$: Quotientenfolge (QF).

    Berechne zu der Folge $\frac{1}{n}$ die ersten Folgenglieder. Daraus kannst du den Grenzwert herleiten.

    Dass dies tatsächlich der Grenzwert ist, muss über den jeweiligen Grenzwert jedoch nachgewiesen werden.

    Lösung

    Der Grenzwert der Folge $\lim\limits_{n \to \infty} \frac{1}{n}=0$. Eine Folge, die den Grenzwert 0 hat, wird auch Nullfolge genannt.

    1. $ \lim\limits_{n \to \infty}a_n= \lim\limits_{n \to \infty}\frac{1}{n}+ \lim\limits_{n \to \infty}3=0+3=3$. Dies kann mit (SF) hergeleitet werden.
    2. $ \lim\limits_{n \to \infty} b_n=\lim\limits_{n \to \infty}3 \cdot \lim\limits_{n \to \infty} \frac{1}{n}=3 \cdot 0=0$. Dies kann mit (PF) hergeleitet werden.
    3. $ \lim\limits_{n \to \infty} c_n=\frac{\lim\limits_{n \to \infty}\frac{1}{n}}{\lim\limits_{n \to \infty}2}=\frac{0}{2}=0$. Dies kann mit (QF) hergeleitet werden.
  • Ordne der jeweiligen Folge den Grenzwert zu.

    Tipps

    Verwende die Grenzwertsätze.

    1. $\lim\limits_{n \to \infty}(a_n±b_n)=\lim\limits_{n \to \infty}a_n±\lim\limits_{n \to \infty}b_n=a±b$
    2. $\lim\limits_{n \to \infty}(a_n \cdot b_n)=\lim\limits_{n \to \infty}a_n \cdot \lim\limits_{n \to \infty}b_n=a \cdot b$
    3. Hier muss zusätzlich noch gelten, dass $b_n≠0$ und $b≠0$: $\lim\limits_{n \to \infty} \left(\frac{a_n}{b_n} \right)=\frac{\lim\limits_{n \to \infty}a_n}{\lim\limits_{n \to \infty}b_n}=\frac{a}{b}$

    Das Quadrat einer Folge ist gerade das Produkt der Folge mit sich selbst.

    Lösung
    1. $\lim\limits_{n \to \infty} a_n=\frac{\lim\limits_{n \to \infty}\left( \frac{1}{n^2}(2+n)\right) }{\lim\limits_{n \to \infty} \left( \frac{1}{n^2}(n^2-13)\right) }=\frac{\lim\limits_{n \to \infty}\frac{2}{n^2}+\lim\limits_{n \to \infty}\frac{1}{n}}{\lim\limits_{n \to \infty}1-\lim\limits_{n \to \infty}\frac{13}{n^2}}= \frac{0+0}{1-0} = \frac{0}{1}=0$. Hier musst du zunächst den Bruch mit $\frac{1}{n^2}$ erweitern.
    2. $\lim\limits_{n \to \infty} b_n=\lim\limits_{n \to \infty}\left( 1+ \frac{1}{n}\right) \cdot \lim\limits_{n \to \infty} 3= \left(\lim\limits_{n \to \infty} 1 + \lim\limits_{n \to \infty} \frac{1}{n} \right) \cdot \lim\limits_{n \to \infty} 3 = (1+0) \cdot 3 =3$.
    3. $\lim\limits_{n \to \infty} c_n=\left(\frac{\lim\limits_{n \to \infty}{2}}{\lim\limits_{n \to \infty}\left( 1-\frac{1}{n} \right)}\right)^2=\left(\frac{\lim\limits_{n \to \infty}{2}}{\lim\limits_{n \to \infty}1-\lim\limits_{n \to \infty}\frac{1}{n}}\right)^2=\left( \frac{2}{1-0} \right)^2=\left( \frac{2}{1} \right)^2=2^2=4$. Das Quadrat der Folge ist gerade das Produkt der Folge mit sich selbst.
    4. $\lim\limits_{n \to \infty} d_n= \lim\limits_{n \to \infty} 2 \cdot \lim\limits_{n \to \infty} \left(\frac{3n}{1-n} \right)= \lim\limits_{n \to \infty} 2 \cdot \lim\limits_{n \to \infty} \left(\frac{3}{\frac{1}{n}-1} \right)=\lim\limits_{n \to \infty} 2 \cdot\left( \frac{\lim\limits_{n \to \infty} 3}{\lim\limits_{n \to \infty}\frac{1}{n}-\lim\limits_{n \to \infty}1} \right) = 2 \cdot (-3)=-6$. Auch musst du den Bruch in der Basis mit dem Faktor $\frac{1}{n}$ erweitern.
  • Gib an, welche Grenzwertsätze verwendet werden.

    Tipps

    Schreibe dir die einzelnen Schritte zur Berechnung des Grenzwertes der Folge auf.

    Die Reihenfolge, in welcher du die Grenzwerte anwendest, ist entscheidend. Für die richtige Reihenfolge „näherst“ du dich dem Term von außen nach innen.

    Du orientierst dich also zunächst am Quotienten und dann erst an Dividend und Divisor.

    Lösung

    An diesem Beispiel kannst du sehen, welche Grenzwertsätze verwendet werden.

    Berechne den Grenzwert der Folge $f_n=\frac{n^2-1}{2n^2+1}$:

    $\begin{align*} \lim\limits_{n \to \infty} \left( \frac{n^2-1}{2n^2+1} \right)&= \lim\limits_{n \to \infty} \left( \frac {\frac{1}{n^2}(n^2-1)}{\frac{1}{n^2}(2n^2+1)} \right) \\ &= \lim\limits_{n \to \infty} \left( \frac{1-\frac{1}{n^2}}{2+\frac{1}{n^2}} \right)\\ &= \frac {\lim\limits_{n \to \infty} \left( 1-\frac{1}{n^2} \right) } {\lim\limits_{n \to \infty} \left( 2+\frac{1}{n^2} \right)} \\ &= \frac{\lim\limits_{n \to \infty}1-\lim\limits_{n \to \infty}\frac{1}{n^2}}{\lim\limits_{n \to \infty}2+\lim\limits_{n \to \infty}\frac{1}{n^2}}\\ &=\frac{1-0}{2+0}=\frac{1}{2} \end{align*}$

    1. In der ersten Zeile wird der Bruch erweitert um den Faktor $\frac{1}{n^2}$. Dies ist noch keine Anwendung der Grenzwertsätze.
    2. In der zweiten Zeile wird die Klammer ausmultipliziert. Dies ist auch noch keine Anwendung der Grenzwertsätze. Du erhältst im Zähler und Nenner jeweils Folgen, die die Voraussetzungen der Grenzwertsätze erfüllen. Beide Folgen konvergieren und sowohl die Folge im Nenner als auch deren Grenzwert sind nicht 0.
    3. Hier wird der Satz für die Quotientenfolge (QF) angewendet: der Grenzwert einer Quotientenfolge ist der Quotient der Grenzwerte. Um diese auszurechnen, werden weitere Grenzwertsätze angewendet.
    4. Im Zähler wird der Satz für die Differenzfolge und im Nenner der für die Summenfolge angewendet. Dieser besagt, dass der Grenzwert der Summen- oder Differenzfolge gerade die Summe oder Differenz der Grenzwerte ist.
    5. Nun können die Grenzwerte sowohl im Zähler als auch im Nenner berechnet werden und somit der Grenzwert der Folge $f_n$.
  • Arbeite heraus, wogegen die Folge konvergiert.

    Tipps

    Du musst den Bruch erweitern, um die Grenzwertsätze für Folgen anwenden zu können.

    1. $\lim\limits_{n \to \infty}(a_n±b_n)=\lim\limits_{n \to \infty}a_n±\lim\limits_{n \to \infty}b_n=a±b$
    2. $\lim\limits_{n \to \infty}(a_n \cdot b_n)=\lim\limits_{n \to \infty}a_n \cdot \lim\limits_{n \to \infty}b_n=a \cdot b$
    3. Hier muss zusätzlich noch gelten, dass $b_n≠0$ und $b≠0$: $\lim\limits_{n \to \infty} \left(\frac{a_n}{b_n} \right)=\frac{a}{b}$.
    Lösung

    Zur Grenzwertberechnung werden bei der Folge Zähler und Nenner jeweils mit $\frac{1}{n^2}$ multipliziert.

    $\begin{align*} \lim\limits_{n \to \infty} \left( \frac{an^2+bn+c}{dn^2+en+f} \right)&= \lim\limits_{n \to \infty} \left( \frac {\frac{1}{n^2}(an^2+bn+c)}{\frac{1}{n^2}(dn^2+en+f)} \right) \\ &= \lim\limits_{n \to \infty} \left( \frac{a+\frac{b}{n}+\frac{c}{n^2}}{d+\frac{e}{n}+\frac{f}{n^2}} \right)\\ &= \frac {\lim\limits_{n \to \infty} \left(a+\frac{b}{n}+\frac{c}{n^2} \right) } {\lim\limits_{n \to \infty} \left( d+\frac{e}{n} +\frac{f}{n^2} \right)} \\ &=\frac{\lim\limits_{n \to \infty}a+\lim\limits_{n \to \infty}\frac{b}{n}+\lim\limits_{n \to \infty}\frac{c}{n^2}}{\lim\limits_{n \to \infty}d+\lim\limits_{n \to \infty}\frac{e}{n}+\lim\limits_{n \to \infty}\frac{f}{n^2}}\\ &=\frac{a+0+0}{d+0+0}=\frac{a}{d} \end{align*}$.

    Ganz allgemein kannst du dir bei solchen Folgen die drei Fälle anschauen:

    1. Der höchste Exponent im Zähler ist größer als der im Nenner: die Folge divergiert.
    2. Der höchste Exponent im Zähler ist gleich dem im Nenner: Die Folge konvergiert. Dies entspricht gerade diesem Beispiel. Der Grenzwert ist der Quotient aus den Faktoren vor dem jeweiligen $n$ mit dem höchsten Exponenten im Zähler und im Nenner.
    3. Der höchste Exponent im Zähler ist kleiner als der im Nenner: die Folge konvergiert gegen 0.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.919

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.907

Lernvideos

36.936

Übungen

34.195

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden