Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Funktionen mit mehreren Veränderlichen – Lokale Extremwerte ohne Nebenbedingungen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 9 Bewertungen
Die Autor*innen
Avatar
Frank Steiger
Funktionen mit mehreren Veränderlichen – Lokale Extremwerte ohne Nebenbedingungen
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Funktionen mit mehreren Veränderlichen – Lokale Extremwerte ohne Nebenbedingungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Funktionen mit mehreren Veränderlichen – Lokale Extremwerte ohne Nebenbedingungen kannst du es wiederholen und üben.
  • Tipps

    Bei Funktionen mit einer Veränderlichen ist das notwendige Kriterium für Extrema $f'(x)=0$.

    Das hinreichende Kriterium für Extrema für Funktionen mit einer Veränderlichen ist $f''(x)\neq 0$.

    Am Vorzeichen kann die Art des Extremums abgelesen werden:

    • $f''(x)>0$ führt zu einem lokalen Tiefpunkt und
    • $f''(x)<0$ zu einem lokalen Hochpunkt.

    Diese Eigenschaften gelten auch für Funktionen $z=f(x;y)$ mit zwei Variablen.

    Lösung

    Sei $z=f(x;y)$ eine Funktion mit zwei Veränderlichen, dann sehen die Kriterien für Extrema so ähnlich aus wie bei Funktionen mit einer Veränderlichen:

    • Die erste Ableitung muss $0$ sein (notwendige Bedingung)
    • und die zweite Ableitung muss ungleich $0$ sein (hinreichende Bedingung).
    Bei Funktionen mit zwei oder mehreren Veränderlichen gibt es partielle Ableitungen erster und zweiter Ordnung. Diese werden abkürzend so beschrieben:

    • $f_x$ (erste Ableitung nach $x$),
    • $f_y$ (erste Ableitung nach $y$),
    • $f_{xx}$ (erste und zweite Ableitung nach $x$) und $f_{xy}$ (erste Ableitung nach $x$, zweite Ableitung nach $y$) sowie
    • $f_{yx}$ (erste Ableitung nach $y$, zweite Ableitung nach $x$) und $f_{yy}$ (erste und zweite Ableitung nach $y$)
    Die Voraussetzung, dass $f_{xy}=f_{yx}=0$ ist, führt zu einer Hesse-Matrix, welche eine Diagonalmatrix ist.

    Die Hesse-Matrix ist die Matrix der zweiten Ableitung.

    Die notwendige Bedingung lautet:

    • $f_x=f_y=0$
    Die hinreichende Bedingung lautet:

    • $f_{xx}>0$ und $f_{yy}>0$, dann liegt ein lokales Minimum vor.
    • $f_{xx}<0$ und $f_{yy}<0$, dann liegt ein lokales Maximum vor.
    • Ansonsten liegt ein Sattelpunkt vor.
  • Tipps

    Für die partiellen Ableitungen betrachtest du die Variable, nach welcher nicht abgeleitet wird, als Konstante.

    Prüfe das hinreichende Kriterium

    • $f_{xx}>0$ und $f_{yy}>0$ $\rightarrow$ lokales Minimum
    • $f_{xx}<0$ und $f_{yy}<0$ $\rightarrow$ lokales Maximum
    • Sattelpunkt sonst

    Die y-Koordinate ist bei beiden Punkten die gleiche.

    Zur Bestimmung der z-Koordinate setzt du die x- sowie y-Werte in $z=f(x;y)$ ein.

    Lösung

    Zunächst müssen die partiellen Ableitungen erster und zweiter Ordnung berechnet werden. Hierfür wird die Variable, nach welcher nicht abgeleitet wird, als Konstante behandelt.

    • $f_x=x^2-4$ und $f_y=2y$
    • $f_{xx}=2x$, $f_{xy}=0$, $f_{yx}=0$ und $f_{yy}=2$
    So, nun kann es losgehen:

    Das notwendige Kriterium

    • $f_x=0~\Leftrightarrow~x^2-4=0$. Addition von $4$ und Ziehen der Wurzel führt zu $x_1=-2$ und $x_2=2$.
    • $f_y=0~\Leftrightarrow~2y=0$. Division durch $2$ führt zu $y=0$.
    Mit diesen Werten kann das hinreichende Kriterium überprüft werden:

    Wir beginnen mit $x_1=2$ und $y=0$:

    • $f_{xx}=2\cdot 2=4>0$ und $f_{yy}=2>0$
    • Hier liegt also ein lokales Minimum vor.
    • Die z-Koordinate erhält man durch Einsetzen von $x_1=2$ und $y=0$ in die Funktionsgleichung: $z=f(2;0)=\frac132^3-4\cdot 2+0^2=-5\frac13$
    • Das lokale Minimum lautet: $E_1\left(2\left|0\right|-5\frac13\right)$.
    Nun schauen wir uns $x_2=-2$ und $y=0$ an:

    • $f_{xx}=2\cdot (-2)=-4<0$ und $f_{yy}=2>0$
    • Hier liegt also ein Sattelpunkt vor.
    • Die z-Koordinate erhält man durch Einsetzen von $x_2=-2$ und $y=0$ in die Funktionsgleichung: $z=f(-2;0)=\frac13(-2)^3-4\cdot (-2)+0^2=5\frac13$
    • Der Sattelpunkt lautet $E_2\left(-2\left|0\right|5\frac13\right)$.
  • Tipps

    Leite die Funktion zunächst nach einer der beiden Variablen ab. Dabei betrachtest du die jeweils andere Variable als Konstante.

    Es ist $f_{xy}=f_{yx}=0$.

    Die beiden anderen partiellen Ableitungen zweiter Ordnung sind Konstanten.

    Die Ableitung von $x^2$ nach $x$ ist $2x$.

    Ebenso ist die Ableitung von $y^2$ nach $y$ gegeben durch $2y$.

    Lösung

    Man leitet ein Funktion mit mehreren Veränderlichen nach einer Variable ab, indem man die jeweils andere Variable als Konstante betrachtet:

    $f_x=x$ und $f_y=-4y$

    Die jeweiligen partiellen Ableitungen zweiter Ordnung sind die partiellen Ableitungen dieser partiellen Ableitungen:

    • $f_{xx}=\frac{\delta (x)}{\delta x}=1$
    • $f_{xy}=\frac{\delta (x)}{\delta y}=0$ - in dieser partiellen Ableitung kommt $y$ nicht vor.
    • $f_{yx}=\frac{\delta (4y)}{\delta x}=0$
    • $f_{yy}=\frac{\delta (4y)}{\delta y}=-4$
  • Tipps

    Prüfe zunächst das notwendige Kriterium für Extrema: $f_x=f_y=0$.

    Das hinreichende Kriterium für Extrema lautet

    • $f_{xx}>0$ und $f_{yy}>0$, dann liegt ein lokales Minimum vor.
    • $f_{xx}<0$ und $f_{yy}<0$, dann liegt ein lokales Maximum vor.
    • Ansonsten liegt ein Sattelpunkt vor.

    Um die z-Koordinate eines Punktes zu erhalten, setzt du die gegebenen Werte für $x$ und $y$ in die Funktionsgleichung ein.

    Lösung

    Mit den bekannten Ableitungen kann die Funktion auf Extrema untersucht werden:

    Das notwendige Kriterium

    • $f_x=0~\Leftrightarrow~x=0$
    • $f_y=0~\Leftrightarrow~4y=0$. Division durch $4$ führt zu $y=0$
    Dies ist die einzige Lösung des notwendigen Kriteriums.

    Nun kann das hinreichende Kriterium überprüft werden:

    • $f_{xx}=1>0$ und $f_{yy}=-4<0$
    • Hier liegt also ein Sattelpunkt vor. Das ist auch ohne das notwendige Kriterium klar, da die zweiten Ableitungen konstant sind und verschiedene Vorzeichen haben.
    • Die z-Koordinate erhält man durch Einsetzen von $x=y=0$ in die Funktionsgleichung: $z=f(0;0)=\frac120^2-2\cdot 0^2=0$
    • Der Sattelpunkt lautet $E\left(0\left|0\right|0\right)$.
  • Tipps

    Die partielle Ableitung erster Ordnung nach $y$ ist $f_y=2y$.

    Die partielle Ableitung zweiter Ordnung ist die partielle Ableitung der partiellen Ableitung erster Ordnung:

    • $f_{xx}=\frac{\delta f_x}{\delta x}$
    • $f_{xy}=\frac{\delta f_x}{\delta y}$
    • $f_{yx}=\frac{\delta f_y}{\delta x}$
    • $f_{yy}=\frac{\delta f_y}{\delta y}$
    Auf den eindimensionalen Fall angewendet, bedeutet dies: Die 2. Ableitung ist die Ableitung der ersten Ableitung.

    Die Untersuchung des hinreichenden Kriteriums erfolgt unter der Voraussetzung $f_{xy}=f_{yx}=0$.

    Lösung

    Die partiellen Ableitungen einer Funktion mit mehreren Veränderlichen kann man bestimmen, indem man die jeweilige Variable, nach welcher nicht abgeleitet wird, als Konstante behandelt:

    $f_x=x^2-4$ und $f_y=2y$

    Die jeweiligen partiellen Ableitungen zweiter Ordnung sind die partiellen Ableitungen dieser partiellen Ableitungen:

    • $f_{xx}=\frac{\delta (x^2-4)}{\delta x}=2x$
    • $f_{xy}=\frac{\delta (x^2-4)}{\delta y}=0$ - in dieser partiellen Ableitung kommt $y$ nicht vor.
    • $f_{yx}=\frac{\delta (2y)}{\delta x}=0$
    • $f_{yy}=\frac{\delta (2y)}{\delta y}=2$
  • Tipps

    Die partiellen Ableitungen erster Ordnung sind

    • $f_x=8x(x^2-1)=8x^3-8x$ sowie
    • $f_y=2y-2$

    Die partiellen Ableitungen zweiter Ordnung sind

    • $f_{xx}=24x^2-8$
    • $f_{yy}=2$
    • $f_{xy}=f_{yx}=0$

    Die y-Koordinate ist bei allen drei Punkten die gleiche. Diese ist die Lösung des notwendigen Kriteriums $f_y=0$.

    Das notwendige Kriterium $f_x=0$ führt zu drei (!) Lösungen.

    Lösung

    Zunächst werden die partiellen Ableitungen bestimmt:

    • $f_x=8x(x^2-1)$ mit Hilfe der Kettenregel. Dieser Term kann noch ausmultipliziert werden für die zweite Ableitung $f_x=8x^3-8x$.
    • $f_y=2y-2$
    • $f_{xx}=24x^2-8$
    • $f_{yy}=2$
    • $f_{xy}=f_{yx}=0$
    Das notwendige Kriterium

    • $f_x=0~\Leftrightarrow~8x(x^2-1)=0$. Da der Term in der faktorisierten Form vorliegt, können die Nullstellen abgelesen werden. Diese sind $x_1=-1$, $x_2=0$ und $x_3=1$.
    • $f_y=0~\Leftrightarrow~2y-2=0$. Addition von $2$ und anschließende Division durch $2$ führt zu $y=1$.
    Es müssen also die drei Lösungspaare $(-1|1)$, $(0|1)$ sowie $(1|1)$ untersucht werden:

    Für die Lösungspaare $(-1|1)$ gilt:

    • $f_{xx}=24\cdot (-1)^2-8=16>0$
    • $f_{yy}=2>0$
    • Es liegt ein lokales Minimum vor $E_1(-1|1|-1)$.
    Für $(0|1)$ gilt:

    • $f_{xx}=24\cdot 0^2-8=-8<0$
    • $f_{yy}=2>0$
    • Es liegt ein Sattelpunkt vor $E_2(0|1|1)$.
    Bei $(1|1)$ gilt:

    • $f_{xx}=24\cdot 1^2-8=16>0$
    • $f_{yy}=2>0$
    • Es liegt ein lokales Minimum vor $E_3(1|1|-1)$.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden