30 Tage risikofrei testen

Überzeugen Sie sich von der Qualität unserer Inhalte im Basis- oder Premium-Paket.

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage risikofrei testen

Mittelwertsatz der Differentialrechnung – Übungen

Mit Spaß üben und Aufgaben lösen

Entschuldige, die Übungen sind zurzeit nur auf Tablets und Computer verfügbar. Um die Übungen zu nutzen, logge dich bitte mit einem dieser Geräte ein.

Brauchst du noch Hilfe? Schau jetzt das Video zur Übung Mittelwertsatz der Differentialrechnung

Hallo, mein Name ist Frank. Kennst du noch den Satz von Rolle? Dieser besagt, dass zwischen zwei Punkten mit gleichem Funktionswert, unter der Voraussetzung von Stetigkeit und Differenzierbarkeit, mindestens eine Stelle mit waagerechter Tangente existiert. Lässt du nun die Voraussetzung des gleichen Funktionswertes weg, erhälst du den Mittelwertsatz mit einer speziellen Steigung an der oben erwähnten Stelle. Dieser besagt nämlich, dass zwischen zwei beliebigen Punkten, unter der Voraussetzung von Stetigkeit und Differenzierbarkeit, mindestens eine Stelle existiert, an welcher die Tangente die gleiche Steigung besitzt, wie die Sekante durch die beiden Punkte. Ich wünsche dir viel Spaß beim Schauen und Lernen.

Zum Video
Aufgaben in dieser Übung
Ergänze den Satz von Rolle.
Gib den Mittelwertsatz an, welcher den Satz von Rolle verallgemeinert.
Bestimme die Stelle, an welcher die Steigung der Tangente $0$ ist.
Prüfe, ob die Voraussetzungen des Mittelwertsatzes gegeben sind.
Beschreibe, wie die Steigung einer Sekanten berechnet werden kann.
Ermittle alle Stellen mit Steigung $m$.