Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Moleküldarstellungen von Kohlenhydraten

Hier erfährst du, wie Kohlenhydrate wie Glucose oder Fructose in 2D dargestellt werden. Entdecke die Unterschiede zwischen der Fischer-Projektion und der Haworth-Schreibweise und lerne die Regeln für die räumliche Darstellung von Zuckermolekülen kennen. Interessiert? Das und vieles mehr findest du im folgenden Text!

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.6 / 9 Bewertungen
Die Autor*innen
Avatar
André Otto
Moleküldarstellungen von Kohlenhydraten
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Moleküldarstellungen von Kohlenhydraten Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Moleküldarstellungen von Kohlenhydraten kannst du es wiederholen und üben.
  • Benenne die einzelnen Darstellungsformen für Kohlenhydrate.

    Tipps

    Was waren die Merkmale der Fischer-Projektion?

    Lösung

    Es gibt viele unterschiedliche Varianten, ein Molekül darzustellen. Hier die groben Merkmale einiger Darstellungsformen:

    Kugel-Stab-Modell:

    • Atome werden durch Kugeln dargestellt, wobei jede Kugelfarbe für ein bestimmtes Atom steht
    • Atombindungen werden durch Stäbe dargestellt
    • dreidimensionales Modell
    Fischer-Projektion:
    • die Kohlenstoffkette wird von oben nach unten aufgeschrieben
    • das am stärksten oxidierte Kohlenstoffatom steht oben
    • die Verbindungen zwischen den Atomen werden durch gerade Striche gekennzeichnet
    Harworth-Projektion:
    • Moleküle werden in der planaren Ringform dargestellt
    • bei Fünfringen liegt der Sauerstoff in der Ecke, die vom Betrachter am weitesten entfernt ist, bei Sechsringen befindet sich der Sauerstoff in der hintersten rechten Ecke
    • Atome und Atomgruppen, die nicht direkt im Ring eingebunden sind, werden an waagerechte Striche geschrieben
    Keilstrich-Schreibweise:
    • räumliche Struktur wird dadurch dargestellt, dass die Atombindungen als Keile, Striche und gestrichelte Keile gezeichnet werden
    • Striche bedeuten, dass die Verbindung auf der Zeichenebene liegen
    • Mehrfachbindungen liegen immer auf der Zeichenebene, das macht die Darstellung leichter
    • voll ausgemalte Keile deuten an, dass sich ein Atom oder eine Gruppe vor der Zeichenebene befindet
    • gestrichelte Keile deuten an, dass sich ein Atom oder eine Gruppe hinter der Zeichenebene befindet
    Häufig werden die Fischer-Projektion oder die Harworth-Projektion mit der Keilstrich-Schreibweise kombiniert, um die fehlende Räumlichkeit auszugleichen.

  • Erkläre, warum so viele unterschiedliche Darstellungsformen notwendig sind.

    Tipps

    Warum kann man nicht alles mit einem Modell erklären und darstellen?

    Lösung

    Jede Darstellungsform hat ihre Vor- und Nachteile. Deshalb eignen sich die einzelnen Darstellungsformen auch für unterschiedliche Erklärungen.

    Beispiele: Die Fischer-Projektion

    Vorteile:

    • sehr übersichtlich
    • schematisch
    Nachteile:
    • berücksichtigt nicht die Dreidimensionalität von Molekülen
    • stellt nur die offene Kettenform von Kohlenhydraten dar
    • ist nur bei einfachen (monomeren) Kohlenhydraten übersichtlich
    Verwendung:
    • Darstellung von Monosachariden (einfachen Kohlenhydraten)
    • Darstellungen verschiedener Isomerien
    Kugel-Stab-Model:

    Vorteil:

    • berücksichtigt die räumliche Struktur
    Nachteile:
    • ist nicht übersichtlich
    • lässt sich nur schwer zweidimensional abbilden
    Verwendung:
    • Darstellung der Dreidimensionalität eines Moleküls
    • Darstellung von Atombindungen
    • Darstellungen von Raumstrukturen der Moleküle

  • Entscheide, welche Moleküle Streoisomere von D-Glucose sind.

    Tipps

    Stereoisomere unterscheiden sich in der räumlichen Anordnung, haben aber dieselbe Struktur.

    Lösung

    Aus der Summenformel $C_6H_{12}O_6$ können viele Isomere entstehen. Stereoisomere haben dieselbe Strukturformel und dieselbe Konstitution (Anordnung der Atome und Atomgruppen), unterscheiden sich aber in der räumlichen Anordnung. Die erste Auswahl ist allerdings identisch mit D-Glucose.

    Beispiel: L-Mannose und D-Galactose besitzen am ersten Kohlenstoffatom die Aldehydgruppe. Sie besitzen beide 6 Kohlenstoffatome, die kettenförmig miteinander verbunden sind. Sie unterscheiden sich nur in der Position der Hydroxygruppen und des Wasserstoffatoms am dritten, vierten und fünften Kohlenstoffatom.

    Fructose ist zwar auch ein Isomer von $C_6H_{12}O_6$, aber aufgrund der Ketogruppe am zweiten Kohlenstoffatom kein Stereoisomer von Galactose und Mannose. Es hat durch die Ketogruppe eine andere Konstitution.

  • Erstelle die Haworth-Schreibweise aus der gegebenen Fischer-Projektion.

    Tipps

    Beachte die FLOH-Regel.

    Wenn bei der Fischerprojektion eine OH-Gruppe auf der linken Seite steht, wo muss sie dann bei der Harworth-Darstellung stehen?

    Lösung

    Ringschluss bei Kohlenhydraten

    Bei Kohlenhydraten mit 6 Kohlenstoffatomen kann der Ringschluss zwischen dem 1. und 4. oder zwischen dem 1. und 5. Kohlenstoffatom stattfinden. In unserem Beispiel findet der Ringschluss zwischen dem 1. und 5. Kohlenstoffatom statt.

    Das $\beta$ vor dem Namen der Haworth-Schreibweise bedeutet, dass die OH-Gruppe am 1. Kohlenstoffatom oben steht.

    Um ein Molekül von der Fischer-Projektion in die Haworth-Schreibweise umzuwandeln und wieder zurück, kannst du die FLOH-Hilfe verwenden.

    Fischer links, oben Haworth

    Das bedeutet, alles was bei der Fischerprojektion auf der linken Seite steht, steht in der Haworth-Projektion oben.

  • Benenne die Stereozentren im Glucosemolekül.

    Tipps

    Stereozentren haben immer vier unterschiedliche Substituenten.

    Lösung

    Chiralität

    Bei der Glucose sind die Kohlenstoffatome 2, 3, 4 und 5 chiral. Ein Kohlenstoffatom ist dann chiral, wenn es vier unterschiedliche Substituenten (Atome oder Atomgruppen) besitzt.

    In der Abbildung ist z.B. das 4. Kohlenstoffatom chiral, da es 4 unterschiedliche Substituenten besitzt. Links eine Hydroxygruppe (gelb), rechts ein Wasserstoffatom (pink), oben der Rest mit der Ketogruppe (blau) und untern der andere Rest des Moleküls (grün).

    Ist ein Kohlenstoffatom in einem Molekül chiral, so wird es als Stereozentrum bezeichnet. Für jedes Stereozentrum können zwei Stereoisomere entstehen. Moleküle, die sich mit ihrem Spiegelbild nicht in Deckung bringen lassen werden als chiral bezeichnet.

    Chirale Moleküle sind in der Lage, polarisiertes Licht zu drehen. Auch ist die Wirkung von organischen Stereomeren im Körper unterschiedlich.

  • Entscheide, welche Moleküldarstellungen das gleiche Molekül zeigen.

    Tipps

    Was bedeutete noch einmal FLOH?

    Lösung

    Umwandlung von der Haworth-Projektion in die Sesselkonfiguration

    Bei der Umwandlung der Haworth-Projektion in die Sesselkonfiguration wird eine Ecke des Sechsrings nach oben geklappt und die andere nach unten.

    Nun müssen die Positionen der Substituenten verändert werden. In der Abbildung ist die linke Ecke nach oben geklappt.

    1.$~$Regeln für die nach oben geklappte Ecke:

    • Alle Substituenten, die in der Haworth-Projektion unten standen, erhalten nun eine äquatoriale Position.
    • Bsp.: blau markierte OH-Gruppe
    • Die Substituenten, die vorher oben standen, erhalten eine axiale Position.
    • Bsp.: grün markierte OH-Gruppe
    2.$~$Regeln für die nach unten geklappte Ecke:
    • Alle Substituenten, die in der Haworth-Projektion unten standen, erhalten nun eine axiale Position.
    • Bsp.: gelb und rot markierten OH-Gruppen.
    • Die Substituenten, die vorher oben standen, erhalten eine äquatoriale Position.