Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Lichtbrechung

Zusammenfassung: Lichtbrechung im Strahlenmodell wird beschrieben. Licht breitet sich als gerade Strahlen aus. Erfahre, wie Licht zwischen verschiedenen Medien wie Luft und Wasser bricht. Folge dem Reflexions- und Brechungsgesetz, um zu verstehen, wie Licht an Grenzflächen interagiert. Neugierig geworden? Hier erfährst du alles im ausführlichen Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Lichtbrechung

Was beschreibt das Strahlenmodell?

1/5
Bewertung

Ø 4.0 / 473 Bewertungen
Die Autor*innen
Avatar
Team Digital
Lichtbrechung
lernst du in der 6. Klasse - 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse

Lichtbrechung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Lichtbrechung kannst du es wiederholen und üben.
  • Tipps
    Lösung

    Wenn Licht auf eine Wasseroberfläche trifft, wird ein Teil davon reflektiert und ein Teil geht hindurch. Die Wasseroberfläche bildet eine Grenzfläche zwischen einem optisch dünneren Medium, der Luft, und einem optisch dichteren Medium, dem Wasser. Beim Übergang verändert sich die Ausbreitungsrichtung des Lichts. Denn es ist für das Licht schwerer, das optisch dichtere Medium, also das Wasser, zu durchdringen.

    Der Lichtstrahl knickt deshalb ab – er wird gebrochen. Wenn Licht von einem optisch dünneren in ein optisch dichteres Medium einfällt, wird es zum Lot hin gebrochen. Auf umgekehrtem Weg wird das Licht vom Lot weg gebrochen, Brechungs- und Einfallswinkel sind dann vertauscht. In beiden Fällen gilt, dass der Brechungswinkel umso größer wird, je größer der Einfallswinkel ist.

  • Tipps

    Der Lichtstrahl wird gebrochen. Wenn wir ein Lot auf die Grenzfläche zeichnen, wo das einfallende Licht auftrifft, dann können wir zwischen dem Einfallswinkel $\alpha$ und dem Brechungswinkel $\beta$ unterscheiden.

    Lösung

    Wenn Licht auf eine Wasseroberfläche trifft, dann finden eine Teilreflexion und ein Teilübergang durch die Wasseroberfläche statt. Die Wasseroberfläche dient dabei als Grenzfläche zwischen einem optisch dünneren Medium, nämlich der Luft, und einem optisch dichteren Medium, dem Wasser.

    Beim Übergang ändert das Licht seine Ausbreitungsrichtung, da es für das Licht schwieriger ist, das optisch dichtere Medium, also das Wasser, zu durchdringen. Daher wird der Lichtstrahl gebrochen und knickt ab. Der Einfallswinkel des Lichts $\alpha$ und der Brechungswinkel des Lichts $\beta$ können anhand eines Lots gemessen werden, das an der Grenzfläche angebracht wird, wo das Licht auftrifft.

    Wenn der Übergang vom optisch dünneren zum optisch dichteren Medium erfolgt, dann wird das Licht zum Lot hin gebrochen. Das bedeutet, dass der Brechungswinkel $\beta$ kleiner ist als der Einfallswinkel $\alpha$. Wird jedoch der Einfallswinkel $\alpha$ größer, nimmt auch der Brechungswinkel $\beta$ zu. Dieser Brechungseffekt ist stärker ausgeprägt, je schräger das Licht auf die Grenzfläche trifft. Es findet keine Brechung statt, wenn das Licht senkrecht auf die Grenzfläche trifft.

  • Tipps

    Der Lichtweg führt über eine Grenze zwischen zwei durchsichtigen Stoffen. An dieser Grenze wird das Licht gebrochen.

    Dadurch erscheinen Objekte unter Wasser für uns an einer höheren Position, als sie tatsächlich sind.

    Lösung

    Um den schräg vor dir im Wasser schwimmenden Fisch zu treffen, müsstest du mit dem geradeaus fliegenden Pfeil unter den Fisch zielen: Der Pfeil sollte nicht direkt auf den Fisch gezielt werden, sondern leicht darunter, um den Fisch zu treffen.

    Dies liegt an der Brechung des Lichts an der Wasseroberfläche: Das Licht vom Fisch, welches unser Auge erreicht, führt von einem optisch dichteren Medium (Wasser) in ein optisch dünneres Medium (Luft). An der Grenze zwischen den zwei durchsichtigen Stoffen wird das Licht gebrochen. Die Richtung des Lichts ist deswegen beim Auge anders als beim Start am Fisch. Dadurch erscheinen Objekte unter Wasser für uns an einer höheren Position, als sie tatsächlich sind.

    Der Fisch im Wasser hat für die ihn betrachtende Person eine Position, die scheinbar höher ist als seine tatsächliche Position. Um diese scheinbare Verschiebung auszugleichen und den Fisch tatsächlich zu treffen, muss man den Pfeil leicht unter den Fisch zielen, sodass er die wahre Position des Fischs erreicht. Auf diese Weise korrigiert man die Brechung des Lichts und trifft den Fisch erfolgreich.

  • Tipps

    Wenn der Brechungswinkel kleiner ist als der Einfallswinkel, dann wird der Lichtstrahl zum Lot hin gebrochen.

    Wenn der Brechungswinkel größer ist als der Einfallswinkel, dann wird der Lichtstrahl vom Lot weg gebrochen.

    Lösung

    Das Medium 1 muss optisch dichter als das Medium 2 sein. Der Brechungswinkel $\boldsymbol {\beta}$ ist größer als der Einfallswinkel $\boldsymbol {\alpha}$. Der Lichtstrahl wird also vom Lot weg gebrochen.

  • Tipps

    Es sind zwei Antworten richtig.

    Licht wird gebrochen und reflektiert.

    Lösung
    • Das Licht breitet sich in Wasser schneller als in Luft aus.
    $\Rightarrow$ Diese Aussage ist falsch: Das Licht breitet sich tatsächlich in Wasser langsamer als in Luft aus und nicht schneller. Das führt zu anderen Effekten wie der Brechung des Lichts, aber nicht zur Verschiebung von Objekten an der Wasseroberfläche.


    • Das Gehirn verlängert den gebrochenen Strahl geradlinig.
    $\Rightarrow$ Diese Antwort ist richtig: Die scheinbare Verschiebung von Objekten unter Wasser wird durch die Lichtbrechung und ihre Interpretation durch unser Gehirn verursacht. Die vom Objekt unter Wasser ausgehenden, aber an der Wasseroberfläche vom Lot weg gebrochenen Lichtstrahlen werden durch das Gehirn geradlinig verlängert, ähnlich wie es auch bei Spiegelbildern oder virtuellen Bildern der Fall ist.


    • Der Lichtweg führt durch eine Grenze zwischen zwei durchsichtigen Stoffen, an der das Licht gebrochen wird.
    $\Rightarrow$ Diese Antwort ist richtig: Wir sehen den Fisch unter Wasser, also erreicht Licht von dem Fisch unser Auge. Die Lichtstrahlen werden auf dem Weg durch das Wasser gebrochen, wenn sie von einem optisch dünneren Medium (Luft) in ein optisch dichteres Medium (Wasser) eintreten. Die Richtung des Lichts ist deswegen beim Auge anders als beim Start am Fisch.


    • Die Lichtintensität unter Wasser verringert sich.
    $\Rightarrow$ Diese Antwort ist falsch: Die Lichtintensität unter Wasser kann sich zwar verringern, aber dies ist nicht der Grund für die Verschiebung von Objekten an der Wasseroberfläche.
  • Tipps

    Licht legt einen langen Weg zu uns auf die Erde zurück.

    Im luftleeren Raum findet keine Ablenkung des Lichts statt.

    Bevor das Licht bei uns auf der Erde ankommt, durchdringt es die Erdatmosphäre.

    Astronautinnen und Astronauten befinden sich im Weltall außerhalb der Erdatmosphäre.

    Lösung

    Das Funkeln der Sterne kann erklärt werden durch den langen Weg, den das Licht von den Sternen bis in unsere Augen zurücklegt. Der größte Teil dieser Strecke befindet sich im luftleeren Raum zwischen dem Stern und der Erde, wo keine Ablenkung des Lichts auftritt.

    Auf dem letzten Teilstück muss das Licht jedoch die Erdatmosphäre durchdringen, bevor es in unsere Augen gelangt. In der Erdatmosphäre gibt es Luftströmungen und Luftverwirbelungen, die – je nach Jahreszeit und Wetterlage – variieren. Unterschiedlich temperierte Luftschichten haben leicht verschiedene Brechungsindizes, wodurch der Lichtstrahl abgelenkt wird und sich zeitlich ändernde Lichtpunkte auf unserer Netzhaut erzeugt werden. Dieses Phänomen interpretieren wir als Funkeln eines Sterns.

    Es ist interessant zu bemerken, dass Astronauten und Astronautinnen auf der Internationalen Raumstation ISS das Sternfunkeln nicht beobachten, da sich ihr Beobachtungsstandort außerhalb der Erdatmosphäre befindet, wo die Ablenkung des Lichts durch die Atmosphäre nicht auftritt.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.225

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen