Ladungen im homogenen Feld – Bewegung in Feldrichtung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Ladungen im homogenen Feld – Bewegung in Feldrichtung
Hallo! In diesem Video wollen wir uns mit der Bewegung von Ladungen im homogenen elektrischen Feld beschäftigen. Genauer gesagt, beschäftigen wir uns mit einer Bewegung längs zur Feldrichtung. Dabei lernst du aus welchen Beträgen sich die Gesamtkraft zusammensetzt und, wie man diese berechnet. Mit Hilfe der Kraft kann eine Formel für die Beschleunigung bestimmt und damit am Ende eine Gleichung für Zeit und Geschwindigkeit aufgestellt werden. Das ganze wird im Video ausführlich hergeleitet. Viel Spaß!
Transkript Ladungen im homogenen Feld – Bewegung in Feldrichtung
Hallo und herzlich willkommen. Ich zeige hier, wie die Größen einer Bewegung von geladenen Teilchen in Längsrichtung eines homogenen elektrischen Feldes berechnet werden. Du solltest die Gleichungen für die geradlinige gleichmäßig beschleunigte Bewegung kennen, das zweite Newtonische Axiom, das besagt, dass F=m×a ist, die Verhältnisse im homogenen und konstanten elektrischen Feld eines Plattenkondensators, die Berechnung der Kraft im zeitlich konstanten elektrischen Feld, die Arbeit im konstanten elektrischen Feld und die Grundregeln vektorieller Addition. Du weißt, dass das elektrische Feld eine Kraft auf geladene Teilchen ausübt. Wollen wir die Bewegung eines solchen Teilchens berechnen, müssen wir diese Kraft in Rechnung stellen und natürlich die Gravitationskraft ebenso, weil das Teilchen eine Masse hat und der Schwerkraft unterworfen ist. Eine Kraft werden wir vorerst auslassen, nämlich die der Reibung, um die Aufgabe für den Anfang nicht zu kompliziert zu machen. Wenn wir zum Beispiel ein positiv geladenes Teilchen in das hier gezeichnete Feld bringen, wird es von der Kraft des elektrischen Feldes und auf der Schwerkraft nach unten gezogen. Mit dem Spezialfall des Newtonischen Gravitationsgesetzes für die Erdoberfläche errechnen wir die Schwerkraftwirkung Fg=mT×g, wobei mT die Masse unseres Teilchens ist. Für die Kraft des elektrischen Feldes berechnen wir FE=qT×E, wobei qT die Ladung unseres Teilchens ist. Die gesamte Kraft, die auf das Teilchen wirkt, ergibt sich aus der Vektorsumme beider. Nehmen wir gemäß unserer Skizze an, dass beide in dieselbe Richtung wirken, da wir ein positiv geladenes Teilchen über der negativ geladenen Platte unseres Kondensators fallen lassen, addieren sich die beiden Beträge. Wirken die beiden Kräfte genau entgegengesetzt, müssen wir natürlich ihre Beträge voneinander subtrahieren. Die Gesamtbeschleunigung, die das Teilchen durch das Wirken der beiden Kräfte erfährt, ermitteln wir dadurch, dass wir unser Ergebnis nach dem zweiten Newtonischen Axiom behandeln. Ersetzen wir dabei gleich E mit dem Ausdruck für das konstante Feld im Plattenkondensator und stellen die Gleichung um, erhalten wir für die Beschleunigung a diesen Ausdruck. Wir wissen aus den Bewegungsgleichungen der Mechanik, dass für den Weg gilt s=½×a×t². Stellen wir diesen Ausdruck um, können wir berechnen, wie lange unser Teilchen benötigt, um unter dem Einfluss der beiden Kräfte einen Weg, der länger ist, zurückzulegen. Nun ist es auch leicht, die Geschwindigkeit des Teilchens am Ende dieser Wegstrecke zu berechnen, denn wir wissen, dass v=a×t ist, also ergibt sich durch Umstellen diese Formel. Haben wir die Geschwindigkeit berechnet, können wir auch leicht die Energie ermitteln, die das Teilchen am Ende seines gleichmäßig beschleunigten Weges hat. Fassen wir kurz zusammen: Du hast gelernt, die Bewegungsgrößen für die Bewegung eines geladenen Teilchens längs zum elektrischen Feld zu berechnen. Wir haben dazu die beiden wichtigsten Kräfte, die Schwerkraft und die Kraft des elektrischen Feldes, angesetzt und für den Fall, dass beide in gleicher Richtung wirken, für die Beschleunigung a erhalten, für die Zeit t, zur Überwindung des Weges s, für die am Ende des Weges s erreichte Geschwindigkeit und für die dort erreichte Bewegungsenergie. Viel Erfolg beim Berechnen und bis zum nächsten Video.
Ladungen im homogenen Feld – Bewegung in Feldrichtung Übung
-
Nenne die Bedingung zur Entstehung eines elektrischen Feldes.
TippsIn einem elektrischen Feld wirkt eine Kraft auf geladene Körper.
Wir kennen zwei Arten von (elektrischer) Ladung.
Zwischen ungleichnamigen Ladungen wirken Kräfte.
Die Wirkung des Feldes auf die Ladung muss eine Wirkung ungleichnamiger Ladungen sein.
LösungWir kennen zwei Arten von (elektrischer) Ladung und sehen, dass zwischen ungleichnamigen Ladungen eine Kraft wirkt. In einem elektrischen Feld wirkt auch eine Kraft auf einen geladenen Körper. Wir müssen annehmen, dass die Feldwirkung durch eine mit seiner ungleichnamige Ladung entsteht, die räumlich von ihm getrennt ist. D. h.: Ladungstrennung ist die entscheidende Voraussetzung für das Entstehen eines elektrischen Feldes.
-
Nenne die Formel für die Kraftwirkung im homogenen und konstanten elektrischen Feld.
TippsDie Kraft ist proportional zur Feldstärke $\overrightarrow{E}$.
Die Kraft ist auch proportional zur Ladung $q$.
LösungDie Kraft zeigt sich als proportional zur Feldstärke $\overrightarrow{E}$ und auch proportional zur Größe der Ladung $q$. Genauere Bestimmung ergab den einfachen Zusammenhang $\overrightarrow{F_E}=q\cdot\overrightarrow{E}$. (Eine auffallende Analogie zur Kraftwirkung im Gravitationsfeld, wo gilt: $\overrightarrow{F_G}=m\cdot\overrightarrow{g}$, mit $\overrightarrow{g}$ als Schwere- oder Fallbeschleunigung, deren Größe vom Schwerefeld des Körpers bestimmt ist, in dem die Masse $m$ sich befindet.)
-
Berechne die Beschleunigung eines geladenen Teilchens in einem homogenen, konstanten elektrischen Feld.
TippsZweites Newtonsches Axiom: Kraft und Beschleunigung
Gesamtkraft: Vektorsumme
Linearkombination paralleler Vektoren = Linearkombination der Gesamtbeträge
LösungUm die Beschleunigung eines geladenen Körpers in einem konstanten und homogenen elektrischen Feld zu berechnen, folgt man zweckmäßigerweise folgendem Schema:
- Zweites Newtonsches Axiom: $\overrightarrow{F}=m_e\cdot\overrightarrow{a}$
- Gesamtkraft auf einen geladenen Körper im Plattenkondensator: $\overrightarrow{F}=\overrightarrow{F_G}+\overrightarrow{F_E}$
- Gewichtskraft für das Elektron $\overrightarrow{F_G}=m_e\cdot\overrightarrow{g}$
- Kraftwirkung des el. Feldes auf das Elektron: $\overrightarrow{F_E}=-e\cdot\overrightarrow{E}$
- Zusammenfassung, vereinfacht für parallele Richtung von $\overrightarrow{F_G}$ und $\overrightarrow{F_E}$: $m_e\cdot a = F = F_G + F_E = m_e \cdot g-e\cdot\frac{U}{d}$
- Umstellen: $a=g-\frac{e\cdot U}{m_e\cdot d}$
-
Berechne die kinetische Energie eines Elektrons, das im Feld eines Plattenkondensators beschleunigt wird.
TippsAllgemeine Gleichung zur Berechnung der kinetischen Energie, hier mit Masse $m_e$.
Bewegungsgleichungen nutzen, um die unbekannte Größe $v(d)$ über $t(d)$ zu bestimmen. Denn $t(d)$ lässt sich leicht über Weg $d$ und Beschleunigung $a$ bei Anfangsgeschwindigkeit $Null$ bestimmen.
Die vorher bestimmte Gleichung für die Beschleunigung des Elektrons unter eben den gegebenen Bedingungen lautete: $a=\frac{m_e\cdot g - e\cdot \frac{U}{d}}{m_e}$.
Nach dem Einsetzen des Ausdrucks für $a$ lässt sich durch Ausmultiplizieren und Kürzen die Gleichung vereinfachen.
Lösung- Die kinetische Energie ist über $W_{kin}=\frac{1}{2}\cdot m_e\cdot v(d)^2$ zu berechnen.
- Die Geschwindigkeit am Ende des Weges $d$ ergibt sich aus $v(d)=a\cdot t(d)$.
- Weg und Zeit sind verknüpft über $d=\frac{1}{2}\cdot a\cdot t(d)^2$, womit $t$ für die Berechnung von $v(d)$ bestimmt werden kann: $t(d)=\sqrt{\bigl\lvert \frac{2d}{a} \bigr\rvert }$.
- So ergibt sich aus (2) und (3) $\lvert v(d) \rvert =\sqrt{\lvert 2ad \rvert}$, und damit $W_{kin}=\lvert m_e\cdot a\cdot d \rvert$.
- Mit unserem Ausdruck für die Beschleunigung wäre also zu berechnen: $W_{kin}=\lvert m_e\cdot g\cdot d- e\cdot U \rvert$.
- Wir erhalten mit $m_e=9.1\cdot10^{-31}kg, e=1.6\cdot10^{-19}C$ und $g=9.8\frac{m}{s^2}$ den Wert: $W_{kin}=8\cdot 10^{-25}Nm$.
- Wir bemerken, dass trotz der geringen Spannung und des großen Abstands der Platten dennoch Elektronen nach oben gezogen werden. Die kinetische Energie ist gering, aber größer als $Null$.
-
Gib an wie man vorgeht, wenn die Platten des Kondensators senkrecht stehen.
TippsKraftwirkungen sind gerichtete Größen.
Gerichtete Größen werden mathematisch mit Vektoren dargestellt.
Bei Linearkombination von Vektoren wird nach Regeln verfahren, mit denen sich Resultanten auch für Richtungen ergeben.
LösungKraftwirkungen sind gerichtete Größen. Über Kräfte berechnete vermittelte Größen wie Beschleunigung, Geschwindigkeit, Weg etc. sind dann ebenfalls gerichtet. Gerichtete Größen werden mathematisch mit Vektoren dargestellt, die den Betrag der Größe und ihre Richtung in einem orientierten Raum angeben. Übliche Linearkombination von Vektoren (Addition, Multiplikation mit Skalaren) ergeben für die Richtungen ebenso wie für die Beträge Resultanten. In den meisten Fällen ist es bequem, die Vektoren in rechtwinkligen (kartesischen) Koordinaten darzustellen und alle Linearkombinationen für jede Koordinate gesondert zu berechnen (in x-Richtung, in y-Richtung, in z-Richtung).
-
Bestimme, wie man das Gewicht eines geladenen Körpers im homogenen Feld eines Plattenkondensator bestimmen könnte.
TippsAnsatz: Kräftegleichgewicht
Ausformulieren der Gleichungen für die Kräfte (mechanische, elektrische)
Umstellen nach $U$
LösungUm die Masse eines geladenen Teilchens mithilfe eines homogenen und konstanten elektrischen Feldes zu bestimmen, würde man etwa diese gedankliche Linie verfolgen:
- Prinzip: Das Teilchen wird im elektrischen Feld gegen die Wirkung der Schwerkraft zum Schweben gebracht.
- Kräftegleichgewicht: $\overrightarrow{F_G}=-\overrightarrow{F_E}$
- Damit $m_e\cdot \overrightarrow{g}=e\cdot \overrightarrow{E}$.
- Vereinfacht für die ideal parallele Ausrichtung der Kraftwirkungen: $m_e\cdot g = e\cdot E$
- Für einen Kondensator mit Plattenabstand $d$ umformuliert: $m_e\cdot g=e\cdot \frac{U}{d}$
- Umgestellt nach $U$: $U=\frac{m_e\cdot g\cdot d}{e}$
- Mit $d=1m, e=1.6\cdot 10^{-19}C, m_e=9.1\cdot 10^{-31}kg, g=9.8\frac{m}{s^2}$ folgte: $U=5.57\cdot 10^{-11}V$.

Bewegung von Ladungsträgern im elektrischen Feld

Ladungen im homogenen Feld – Bewegung in Feldrichtung

Ladungen im homogenen Feld – abgelenkte Bewegung

Aufgaben zur Bewegung von Ladungsträgern im elektrischen Feld

Millikan-Versuch – auf der Suche nach der Elementarladung

Faradayscher Käfig

Braunsche Röhre – Aufbau und Funktionsweise

Braun'sche Röhre – Berechnung von Kenngrößen
6.322
sofaheld-Level
6.573
vorgefertigte
Vokabeln
9.068
Lernvideos
39.160
Übungen
35.326
Arbeitsblätter
24h
Hilfe von Lehrer*
innen

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Transistor
- Drehmoment
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Hookesches Gesetz und Federkraft
- elektrische Stromstärke
- elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'sches Gesetz
- Freier Fall
- Kernkraftwerk
- Atom
- Aggregatzustände
- Infrarot, UV-Strahlung, Infrarot UV Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Trigonometrische Funktionen
- Lichtjahr
- SI-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, akustischer Dopplereffekt
- Kernspaltung
Liebe Saramaggi,
es gibt für manche Themen besondere Videos mit Übungen, seit neuestem sogar eine ganze neue Rubrik "Die Übung". Der Mangel wird also nach und nach behoben, wenn auch vielleicht für das Thema dieses Videos nicht so bald - pardon !
Danke für das Lob.
Viele Grüße,
kalo
PS. - Bei der Lautstärke den Regler am eigenen Computer nicht vergessen ...
Etwas was ich noch hinzufügen möchte, das video hat mir weitergeholfen da die formeln alle gut hintereinander aufgereiht waren sodass man nicht durcheinander kommt aber könntet ihr nächstes mal auch beispielaufgaben am ende des bideos machen? Dann festigt sich das wisen besser
Liebes Sofatutor Team, die videos helfen gut weiter jedoch sind manchmal die videos sehr leise von der acoustic her.
Bitte benutzt ein mikrofon oder jedenfalls ein lauteres mirkophon falls ihr schon eins benutzt weil die videos nicht so laut sind und wenn man lernt die stimmen lauter sein sollten sodass man auch konzentriert bleubt und es gut hört.