Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Hertzscher Dipol

Der hertzsche Dipol ist ein grundlegendes Konzept zur Erzeugung von elektromagnetischen Wellen. Erfahre, wie er mit dem offenen Schwingkreis verbunden ist und wie seine Funktionsweise aufgebaut ist. Mach den nächsten Schritt in die Welt des Elektromagnetismus! Interessiert? Dies und vieles mehr erfährst du im folgenden Text.

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 14 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Hertzscher Dipol
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Hertzscher Dipol Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Hertzscher Dipol kannst du es wiederholen und üben.
  • Gib an, was ein Hertz'scher Dipol ist.

    Tipps

    Ein Schwingkreis besteht aus einem Kondensator und einer Spule.

    Im Dipol sollen sich elektrisches und magnetisches Feld sehr schnell abwechseln.

    Lösung

    Um die Definition des Hertz'schen Dipols besser zu verstehen, ist es sinnvoll, zunächst einmal den Schwingkreis zu betrachten.

    Dieser besteht aus einem Kondensator und einer Magnetfeldspule, welche in einem Wechselstromkreis angebracht sind.

    Doch was schwingt hier nun?
    In einem elektromagnetischen Schwingkreis ist die Schwingung im Verlauf der Energiefelder zu finden.
    Im ersten Moment baut sich etwa das Magnetfeld der Spule auf, ehe dieses wieder abbaut und sich stattdessen das elektrische Feld des Kondensators aufbaut.

    Da sich diese Felder stets abwechseln, spricht man von einem Schwingkreis.

    Der Hertz'sche Dipol ist nun ein solcher Schwingkreis, der eine besonders hohe Eigenfrequenz hat, bei dem sich also das elektrische und magnetische Feld sehr schnell abwechseln.

    Realisiert wird das, indem der Schwingkreis modifiziert wird. Man wählt als Dielektrikum Luft, verringert die Anzahl der Spulenwindungen auf $0$ und erhöht den Abstand der Kondensatorplatten.

    Gewissermaßen wird der Schwingkreis dadurch zu einem Stab aufgebogen.

  • Benenne die Bestandteile des Schwingkreises.

    Tipps

    In einem Schwingkreis bauen sich immer abwechselnd ein magnetisches und elektrisches Feld auf.

    Der Schwingkreis wird an eine Wechselspannung angeschlossen.

    Lösung

    Der elektromagnetische Schwingkreis besteht im Wesentlichen aus zwei Bauteilen: Einer Spule und einem Kondensator.

    Diese sind in Reihe in einem Wechselstromkreis geschaltet.

    Da der Strom, der einer Wechselspannung folgt, einen Stromkreis immer abwechselnd mit und gegen den Uhrzeigersinn durchläuft, baut sich jeweils ein anderes Kraftfeld auf.

    Durchläuft der Strom zuerst die Spule, so baut sich das Magnetfeld auf. Wird nun die Polung des Stromes geändert, so fließt dieser in die andere Richtung und das Magnetfeld baut sich ab, während sich das elektrische Feld des Kondensators aufbaut.

    Aufgrund dieser abwechselnden Reihenfolge des Auf- und Abbaus des elektrischen und magnetischen Feldes, spricht man von einer Schwingung.

    Daher kommt auch der Name der Schaltung: Elektromagnetischer Schwingkreis.

    Wichtig ist, dass man diesen Schwingkreis zunächst einmal durch Induktion aufladen muss.

  • Berechne die Eigenfrequenz des Schwingkreises.

    Tipps

    Lösung

    Um die Eigenfrequenz des Schwingkreises zu berechnen, müssen zunächst die Kapazität des Kondensators und die Induktivität der Spule berechnet werden.

    Um die Induktivität einer Spule zu berechnen, müssen deren geometrische Abmessung, sowie die Wicklungszahl und die Permittivität bekannt sein.

    Es gilt :

    $L = \mu_0 \cdot \mu_r \cdot N^2 \cdot \frac{A}{l}$.

    Für den Kondensator gilt der Zusammenhang :

    $C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$.

    Wobei $\epsilon_0$ die elektrische Feldkonstante ist, $\epsilon_r$ die Dielektrizitätszahl und $\frac{A}{d}$ die geometrische Abmessung des Kondensators.

    Die Eigenfrequenz lässt sich mit der Formel $\omega = \frac{1}{\sqrt{LC}} $ berechnen.

    Sind also die Kapazität und die Induktivität bekannt, kann daraus direkt die Eigenfrequenz des Schwingkreises berechnet werden.

    Mit den gegebenen Werten errechnet sich in unserem Beispiel $\omega$ mit $\ C = 2,2125 \cdot 10^{-9} F$ und $ L = 6,28 H$ zu :

    $\omega = \frac{1}{\sqrt{6,28 \cdot 2,2125 \cdot 10^{-9}}} = 8.483,57 Hz$.

    Die Eigenfrequenz des Schwingkreises beträgt also etwa $\omega = 8,5 kHz$.

  • Analysiere die Erzeugung einer elektromagnetischen Welle im Hertz'schen Dipol.

    Tipps

    Zunächst liegt eine Spannung im Dipol an.

    Einer Spannung folgt ein elektrisches Feld.

    Ein magnetisches Feld folgt auf einen Stromfluss.

    Lösung

    Um die Wellenerzeugung mit dem Hertz'schen Dipol besser zu verstehen, schauen wir uns die einzelnen Schritte hier genauer an.

    Zunächst liegt eine Spannung im Dipol an. Das eine Ende ist nun positiv, das andere negativ geladen. Dadurch bildet sich ein elektrisches Feld. Dieses ist hier grün dargestellt.

    Bei $t = \frac{1}{4}T$ herrscht nun keine Spannung mehr im Stab. Dafür fließt ein Strom (blau dargestellt).

    Das elektrische Feld von $t = 0$ hat sich mittlerweile vom Dipol abgekapselt.

    Nun entsteht wegen des Stromflusses ein magnetisches Feld um den Dipol herum.

    Bei der Hälfte der Periodendauer $ t = \frac{1}{2} T$ fließt kein Strom mehr, dafür herrscht wieder eine Spannung. Diese ist nun der von $t=0$ entgegen gepolt.

    Dadurch entsteht wieder ein elektrisches Feld, welches nun allerdings andersherum gepolt ist.

    Wie auch das ursprüngliche elektrische Feld hat sich mittlerweile auch das magnetische Feld vom Dipol abgekapselt und bewegt sich von diesem weg.

    Bei $t = \frac{3}{4}$ der Periodendauer ist die Spannung nun wieder $0$, es fließt jedoch wieder ein Strom $I$. Dieser zeigt nun in die entgegengesetzte Richtung des Stromes zum Zeitpunkt $ t = \frac{1}{4}$, denn er folgt ja der im Verhältnis zu $ U (\frac{T}{2})$ umgepolten Spannung.

    So ist also auch das Magnetfeld genau andersherum orientiert.

    Du siehst also: Wird ein Hertz'scher Dipol an eine Wechselspannung angeschlossen, erzeugt dieser Schwingungen des elektrischen und magnetischen Feldes, also eine elektromagnetische Welle.

  • Nenne Beispiele für elektromagnetische Wellen.

    Tipps

    Elektromagentische Wellen sind Schwingungen eines elektromagnetischen Feldes.

    Lösung

    Elektromagentische Wellen sind Schwingungen eines elektromagnetischen Feldes.

    Diese breiten sich durch den Raum aus. Dabei transportieren sie keine Materie, sondern ausschließlich Energie. Da zur Übertragung elektromagnetischer Wellen kein Trägermedium benötigt wird, können diese auch durch ein Vakuum übertragen werden.

    Das ist auch sehr gut so, da die elektromagnetische Strahlung der Sonne sonst gar nicht erst durch das Vakuum des Weltalls hindurch zu uns gelangen könnte.

    Beispiele für elektromagnetische Wellen sind das Licht, Mikrowellen oder die Röntgenstrahlung.

    Andere Wellen, die ein Medium wie Luftteilchen oder Wasser brauchen, zählen nicht zu den elektromagnetischen Wellen.

  • Zeige die Zusammenhänge zwischen den physikalischen Größen.

    Tipps

    $ C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$

    $L = \mu_0 \cdot \mu_r \cdot N^2 \cdot \frac{A}{l} $

    Es gilt $\omega = \frac{1}{\sqrt{LC}}$.

    Lösung

    Um die Zusammenhänge zwischen der Induktivität $L$, der Kapazität $C$ und der Eigenfrequenz des Schwingkreises $\omega$ besser zu verstehen, schauen wir uns zunächst an, wie sich diese Größen zusammensetzen.

    Die Kapazität $C$ hängt von der elektrischen Feldkonstante $\epsilon_0$, der Dielektrizitätszahl $\epsilon_r$ und der Geometrie des Kondensators ab .

    Es gilt die Formel für den Plattenkondensator:

    $ C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$.

    Ganz ähnlich lautet die Formel für die Induktivität einer Spule:

    $L = \mu_0 \cdot \mu_r \cdot N^2 \cdot \frac{A}{l} $.

    Hier ist $\mu_0$ die magnetische Feldkonstante, $\mu_r$ die Permittivitätszahl, $N$ die Anzahl der Windungen.

    Sind nun Induktivität und Kapazität bekannt, können wir damit die Eigenfrequenz des Schwingkreises berechnen.

    Es gilt $\omega = \frac{1}{\sqrt{LC}}$ .

    $\omega$ ist also der Kehrwert der Wurzel aus dem Produkt aus $L$ und $C$.

    Generell nimmt die Eigenfrequenz dann große Werte an, wenn $L$ und $C$ möglichst klein sind. Genau das versucht man mit dem Hertz'schen Dipol umzusetzen.

    Hier werden Geometrie, Werkstoffkonstanten und Wicklungszahl so angepasst, dass ein möglichst großer Wert für $\omega$ entstehen kann.