Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Elektrischer Schwingkreis – Aufbau und Ablauf

Der elektrische Schwingkreis ist eine Schaltung aus Kondensator und Spule, die elektrische Schwingungen erzeugt. Erfahre in diesem Video, wie ein geschlossener Schwingkreis funktioniert, welche Energietransformationen stattfinden und warum reale Schwingungen immer gedämpft sind. Interessiert? Dies und vieles mehr findest du im folgenden Text.

Inhaltsverzeichnis zum Thema Elektrischer Schwingkreis – Aufbau und Ablauf
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 18 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Elektrischer Schwingkreis – Aufbau und Ablauf
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Elektrischer Schwingkreis – Aufbau und Ablauf Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Elektrischer Schwingkreis – Aufbau und Ablauf kannst du es wiederholen und üben.
  • Gib an, welche Bauteile im elektrischen Schwingkreis enthalten sind.

    Tipps

    Wir müssen dem System Energie zuführen können.

    Wir betrachten eine ungedämpfte Schwingung.

    Lösung

    In einem elektrischen Schwingkreis können wir elektrische Schwingungen beobachten.

    Dazu brauchen wir eine Spule und einen Kondensator, den wir mit einer Spannungsquelle aufladen können.

    Die Eigenschaften von Kondensator und Spule, also die Kapazität und die Induktivität, bestimmen dabei, wie lang eine Schwingung dauert. Je größer Kapazität und Induktivität sind, desto länger die Periodendauer.

    Generell können wir den Ablauf einer Periode dabei in vier Schritte unterteilen.

    Zunächst wird der Kondensator mit der Spannungsquelle geladen, sodass die gesamte Energie der Schaltung im Kondensator vorliegt.

    Der Kondensator entlädt sich nun und es fließt ein Strom, der ein Magnetfeld in der Spule erzeugt.

    Durch die Selbstinduktion der Spule wird nun wiederum eine Spannung erzeugt, die den Kondensator umgekehrt zu Schritt 1 auflädt.

    Im letzten Schritt fließt nun ein ebenfalls umgekehrter Strom beim Entladen des Kondensators und es baut sich wieder ein Magnetfeld in der Spule auf.

    Dieses erzeugt nun wieder einen Strom, der zu einer Spannung am Kondensator führt und diesen auflädt.

    Damit ist der Kreislauf geschlossen.

  • Bestimme, was ein elektrischer Schwingkreis ist.

    Tipps

    Der elektrische Schwingkreis wird auch $LC$-Schwingkreis genannt.

    Je größer die Induktivität ist, desto stärker wehrt sich die Spule gegen eine Änderung des magnetischen Feldes.

    Lösung

    Man bezeichnet eine Schaltung aus einem Kondensator und einer Spule als einen elektrischen Schwingkreis, da in dieser elektrische Schwingungen möglich sind.

    Neben Kondensator und Spule ist eine Spannungsquelle notwendig, um der Schaltung Energie zuzufügen.

    Ein elektrischer Schwingkreis ist eine Schaltung aus einem Kondensator mit der Kapazität C und einer Spule mit Induktivität L.

    In diesem Schaltkreis ist eine elektrische Schwingung zwischen dem magnetischen Feld der Spule und dem elektrischen Feld des Kondensators möglich. Dabei ist stets der Energieerhaltungssatz gültig.

    Betrachten wir den Ablauf einer Schwingung etwas genauer. Zunächst wird an den Kondensator eine Spannung angelegt und dieser so geladen. Dem System wird also Energie hinzugefügt.

    Die angelegte Spannung wird nun entfernt. Nun entlädt sich der Kondensator, wobei ein Strom $I$ fließt. Dieser Strom muss sich zwangsläufig auch durch die Spule bewegen, sodass diese nun ein Magnetfeld erzeugt. Die elektrische Anfangsenergie wurde also in eine magnetische Energie (Spule) „übersetzt“:

    Die Energie des magnetischen Feldes induziert nun wieder eine Spannung, die den Kondensator auflädt. Dieser Prozess wiederholt sich, mit bestimmter Frequenz immer wieder und wird als der elektromagnetische Schwingkreis bezeichnet.

  • Untersuche die Periodendauer.

    Tipps

    $ I = \frac {Q}{t} $

    Es tritt Selbstinduktion auf.

    Die Periodendauer entspricht dem Kehrwert der Frequenz.

    Lösung

    Innerhalb einer Periodendauer wird im elektrischen Schwingkreis die Energie zweimal von Kondensator zu Spule und zurück transferiert.

    Dabei gilt der Grundsatz: Je größer $C$ und $L$, desto länger ist $T$. Je größer die Kapazität des Kondensators und die Induktivität der Spule sind, desto länger dauert es also, eine volle Schwingung zu beschreiben.

    Diesen Grundsatz wollen wir nun etwas genauer betrachten.

    Eine hohe Kapazität bedeutet, dass bei geringer Spannung dennoch eine relativ hohe Ladung auf dem Kondensator gespeichert werden kann.

    Es ist ja $ I = \frac {Q}{t} $. Also der Strom ist Ladung pro Zeit.

    Das bedeutet auch, dass es entweder länger dauert, den Kondensator zu laden oder entladen, wenn dessen Kapazität hoch ist. Oder, dass ein größerer Strom fließen muss.

    Während sich der Kondensator entlädt, wird nun der Strom in der Schaltung maximal und und es bildet sich ein Magnetfeld in der Spule aus.

    Je größer die Induktivität der Spule $L$ ist, desto stärker sind auch die Effekte der Selbstinduktion. Man könnte sagen, die Spule wehrt sich umso stärker, gegen die Änderung des magnetischen Feldes, je größer $L$ ist.

  • Analysiere den Ablauf einer vollen elektrischen Schwingung.

    Tipps

    Die Periode ist in vier einzelne Phasen zu unterteilen.

    Es gilt der Energieerhaltungssatz.

    Die Energie wird zwischen elektrischer und magnetischer Energie hin- und hertransferiert.

    Lösung

    Um eine volle elektrische Schwingung im Schwingkreis zu beschreiben, muss die Energie zweimal zwischen Kondensator und Spule transferiert werden.

    Diese Periode ist in vier einzelne Phasen zu unterteilen.

    Phase 1 : Der Kondensator wird geladen und dem System so Energie hinzugefügt. Eine Spannungsquelle lädt den Kondensator. Zu diesem Zeitpunkt ist die gesamte Energie des Systems im Kondensator gespeichert: $W_{el} = W_{ges}$.

    Phase 2: Der Kondensator entlädt sich und der Strom nimmt ein Maximum an. Zu diesem Zeitpunkt ist die Energie im elektrischen Feld des Kondensators $ W_{el} = 0$, denn die gesamte Energie liegt im magnetischen Feld der Spule vor $W_{mag} = W_{ges}$.

    Phase 3: Der Kondensator wird durch Induktion wieder entgegengesetzt aufgeladen. Dabei ist wieder $W_{el} = W_{ges}$.

    Phase 4: Der Kondensator entlädt sich ein zweites Mal, sodass $ W_{el} = 0$ und $W_{mag} = W_{ges}$. Auch hier ist die Richtung des Magnetfeldes der Spule entgegengesetzt.

    Nach Phase 4 wird nun wieder eine Spannung am Kondensator induziert und damit beginnt eine zweite Periode der elektrischen Schwingung.

  • Gib an, welche Aussagen über den elektrischen Schwingkreis zutreffen.

    Tipps

    Der elektrische Schwingkreis wird auch $LC$-Schwingkreis genannt.

    Die Energie wird periodisch transferiert.

    Lösung

    Ein elektrischer Schwingkreis besteht immer aus einem Kondensator und einer Spule. Initialisiert wird die Schwingung, indem der Kondensator durch eine äußere Spannung $U_a aufgeladen wird. Dem System wird hier also Energie zugeführt.

    Wird die Spannung $U_a = 0$, so entlädt sich der Kondensator. Das elektrische Feld baut sich ab und es fließt ein Strom, der ein Magnetfeld in der Spule erzeugt.

    Die Energie aus dem elektrischen Feld des Kondensators wird also in ein magnetisches Feld in der Spule „übersetzt“.

    Typisch für den elektrischen Schwingkreis ist, dass dieser periodisch abwechselnd Energie im elektrischen Feld des Kondensators und im magnetischen Feld der Spule speichert.

  • Erkläre, welche Prozesse am Kondensator ablaufen.

    Tipps

    $ I = \frac{Q}{t} $

    Die Kondensatorenergie hängt von der angelegten Spannung ab.

    Lösung

    Die maßgebliche Eigenschaft eines Kondensator ist die Kapazität.

    Diese setzt sich zusammen aus der Geometrie der Kondensatorplatten, der verwendeten Materialien und der elektrischen Feldkonstante $ \epsilon_0$.

    Es gilt der Zusammenhang $ C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d} $.

    Laden wir den Kondensator nun auf, fügen wir den Platten Energie zu, die in einem elektrischen Feld zwischen den Platten gespeichert wird.

    Hier gilt $ E = \frac{1}{2} \cdot C \cdot U2 $ für die elektrische Energie im Feld des Kondensators.

    Je größer die Kapazität und die Spannung, desto größer ist auch die gespeicherte Energie.

    Verringert man nun die Spannung an den Platten, so muss sich demnach das elektrische Feld abbauen, denn die Kapazität ist ja eine Bauteileigenschaft und damit konstant.

    Wenn wir an einen Kondensator mit $ F = 100 \mu F $ zunächst eine Spannung von $U_1 = 2 V$ anlegen und diese danach auf $U_" = 1V$ verringern, muss sich dieses Vorgehen auf die Energie des Kondensators auswirken.

    In unseren Beispielen erhalten wir für die erste Berechnung $ E_1 = 100 \ cdot^{-6} F \cdot (2V)^2 = 400 \mu J$ einen höheren Wert als für den Fall $E_2 = 100 \mu J$.

    Das bedeutet, dass sich das elektrische Feld abbaut.

    Indem die Ladung $Q$ innerhalb der Zeit $t$ aus dem Kondensator herausfließt, also $ \frac {Q}{t} $, können wir außerdem ablesen, dass ein Strom $I$ entstehen muss, der die elektrische Energie abbaut.

    Der Kondensator wandelt also eine elektrische Feldenergie in einen elektrischen Strom um.