Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zustandsgrößen der Sterne

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 4 Bewertungen
Die Autor*innen
Avatar
sofatutor Team
Zustandsgrößen der Sterne
lernst du in der 11. Klasse - 13. Klasse

Zustandsgrößen der Sterne Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Lerntext Zustandsgrößen der Sterne kannst du es wiederholen und üben.
  • Tipps

    Welche Größen beschreiben physikalische Eigenschaften eines Sterns?

    Fünf der Antworten sind korrekt.

    Lösung

    Sterne werden in der Astronomie durch eine Reihe von Zustandsgrößen beschrieben. Diese charakterisieren einen jeden Stern anhand von direkt und indirekt messbaren physikalischen Eigenschaften.

    Dazu gehören die Zustandsgrößen, die das optische Erscheinungsbild eines Sterns beschreiben, also Oberflächentemperatur, Spektralklasse und Leuchtkraft eines Sterns. Aber auch solche, die allgemeine Eigenschaften zum Aufbau des Sterns charakterisieren. Dazu gehören unter anderem Masse, Radius und mittlere Dichte.

    Es gibt darüber hinaus auch noch weitere Zustandsgrößen wie die Fallbeschleunigung auf der Sternoberfläche oder die Rotationsgeschwindigkeit des Sterns.

    Nicht relevant bei der Beschreibung der Eigenschaften von Sternen sind hingegen (subjektive) historische Parameter wie Entdecker, Entdeckungsjahr oder mögliche mythologische Bedeutungen. Auch die Entfernung zur Erde ist kein Parameter, der zur Beschreibung eines Zustandes eines Sterns verwendet wird. Er wird jedoch indirekt beispielsweise zur Berechnung absoluter Helligkeiten oder Sternenmassen angewendet.

  • Tipps

    Welche Sternenfarben gibt es überhaupt?

    Wo ordnet sich die Sonne ein (siehe Beschreibung oben)?

    Wie verändert sich die Farbe eines glühenden Metallstücks mit zunehmender Temperatur?

    Lösung

    Sterne können Farben von Blau über Weiß bis zu Gelb, Orange und Rot besitzen. Sterne mit violetten oder grünlichen Farbtönen gibt es nicht.

    Am heißesten sind blaue Sterne. Sie besitzen eine mittlere Oberflächentemperatur von etwa 25000 Kelvin. Weiße Sterne sind etwas kühler, im Mittel liegen sie bei 10 000 Kelvin. Die Oberflächentemperaturen von gelben Sternen wie der Sonne liegt noch tiefer, bei etwa 6 000 Kelvin. Am kältesten sind rote Sterne. Ihre mittlere Oberflächentemperatur liegt bei 2 800 Kelvin. Das sind aber immer noch über 2 500° Celsius!

  • Tipps

    An welcher Achse kannst du im Hertzsprung-Russel-Diagramm welche Informationen ablesen?

    Für jeden Stern sind zwei Eigenschaften gegeben. In welcher Sternengruppe liegt der Schnittpunkt der beiden Eigenschaften jeweils?

    Die absolute Magnitude benötigst du hier nicht (sie ist ein anderes Helligkeitsmaß).

    Lösung

    Um im Hertzsprung-Russel-Diagramm die Lage eines Sterns angeben zu können, müssen zwei Eigenschaften von ihm bekannt sein: Oberflächentemperatur oder Spektralklasse sowie Leuchtkraft oder absolute Magnitude.

    Dort, wo sich die beiden Linien im Diagramm schneiden, liegen die Sterne, die beide Eigenschaften in sich vereinen. So sind heiße, aber leuchtschwache Sterne Weiße Zwerge, also Sterne, die am Ende ihres Lebenszykluses angekommen sind. Sie befinden sich in der unteren linken Ecke des Diagramms.

    Riesen hingegen sind weniger heiß, jedoch aufgrund ihrer Größe sehr leuchtstark. Noch leuchtstärker sind die Überriesen. Beide Gruppen liegen oben rechts im Diagramm. Sie haben beide den Ast der Hauptreihensterne verlassen.

    Die meisten Sterne gehören zu den Hauptreihensternen und bilden im Diagramm eine Diagonale. Sie können prinzipiell jeder Temperatur beziehungsweise Spektralklasse sowie jeder Leuchtstärke angehören. Allerdings sind nur massereiche Sterne heiß und leuchtstark. Massearme Sterne sind kühler und weniger leuchtstark.

  • Tipps

    Die Beziehungen werden so gelesen: $R\sim M$ zum Beispiel bedeutet, dass ein Stern mit dem Radius der Sonne auch die Masse der Sonne besitzt, mit einem doppelten Sonnenradius die doppelte Sonnenmasse usw.

    Auf beiden Seiten setzt du nur den Faktor ein, um den sich die jeweilige Größe von der Größe der Sonne unterscheidet. Also zum Beispiel für R nur den Faktor 2, weil der Stern den doppelten Sonnenradius besitzt.

    Setze die Faktoren vom Beispielstern ein und überprüfe bei jeder Formel, ob auf beiden Seiten (näherungsweise) das gleiche Ergebnis steht.

    Lösung

    Für die Beziehung von Hauptreihensternen gelten die nebenstehenden gezeigten Formeln. Die zweite Formel ist dabei nur für Sterne zu verwenden, die schwerer als die Sonne sind.

    Am gegebenen Beispiel ergibt sich dort nämlich:

    $M^{3,5}=3^{3,5}=46,8$.

    Ein Stern mit einer dreimal so großen Masse wie die Sonne besitzt eine etwa 47 Mal so große Leuchtkraft.

    $M^{0,6}=3^{0,6}=1,93$

    Ein Stern mit einer dreimal so großen Masse wie die Sonne besitzt einen etwa doppelt so großen Radius wie die Sonne.

    Diese empirisch hergeleiteten Beziehungen ermöglichen es, von der beobachtbaren Leuchtkraft L eines Hauptreihensterns auf seine Masse M und damit dann auch auf seine Radius R zu schließen.

  • Tipps

    Das Sternenlicht wird durch ein Prisma in seine Bestandteile aufgespalten. Tritt es an der Sternenoberfläche aus, ist das Spektrum zunächst kontinuierlich, das heißt, ohne Unterbrechungen.

    Gase wie hier Wasserstoff geben nur Licht bestimmter Wellenlängen ab. Umgekehrt absorbieren Gase für sie jeweils typische Wellenlängen.

    Lösung

    Sterne geben an ihrer Oberfläche stets Licht mit einem kontinuierlichen Spektrum ab. Die schwarzen Linien in den Sternenspektren entstehen demnach erst durch die Einwirkung eines äußeren Faktors.

    Es ist deutlich, dass in jedem Spektrum Licht mit bestimmten Wellenlängen absorbiert wird. Diese Bereiche erscheinen als schwarze Linien. Sie sind für jeden Spektraltyp von unterschiedlich gelegenen Sternen unterschiedlich, können also nicht eine gleichbleibende Ursache haben wie Messungenauigkeiten, Verschmutzungen oder den Durchgang durch die Erdatmosphäre oder das Wirken schwarzer Löcher.

    Die Ursache für die schwarzen Linien liegt in der Atmosphäre des jeweiligen Sterns selbst. Durchquert das Licht diese, so werden bestimmte Wellenlängen absorbiert. Welche Wellenlängen, ist bei jedem Stern desselben Spektraltyps gleich. Die Atmosphären ähnlicher Sterne bestehen nämlich aus den gleichen Gasen. So wie beispielsweise Wasserstoff nur bestimmte Wellenlängen emittiert (siehe Abbildung), absorbiert es diese aus dem kontinuierlichen Spektrum des Lichtes, das von der Sternoberfläche abgegeben wird.

  • Tipps

    Die Formel ist so angegeben, dass du nur die Zahlenwerte einsetzen musst, um die Gesamtmasse M als Vielfaches der Sonnenmasse zu erhalten.

    Lösung

    In diese Formel können die Zahlenwerte ohne Einheiten eingesetzt werden und man erhält als Ergebnis die Gesamtmasse in Vielfachen der Sonnenmasse:

    $M=\frac {a^3\cdot r^3} {T^2}=\frac {7,5^3\cdot 2,6^3} {50^2}=2,97$

    Die Masse der Doppelsterne Sirius A und Sirius B beträgt somit rund drei Sonnenmassen.

    Doppelsternsysteme eröffnen somit neben der Massenbestimmung über die Leuchtkraft auch die Möglichkeit, mit Hilfe des dritten Keplerschen Gesetzes die Masse zu ermitteln.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.224

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden