30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Die Dichte – eine Stoffkonstante

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Mit Spaß Noten verbessern

4.385

sofaheld-Level

6.572

vorgefertigte
Vokabeln

9.409

Lernvideos

40.092

Übungen

35.859

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

30 Tage kostenlos testen

Testphase jederzeit online beenden

Bewertung

Ø 4.5 / 12 Bewertungen
Die Autor*innen
Avatar
Team Digital
Die Dichte – eine Stoffkonstante
lernst du in der 6. Klasse - 7. Klasse - 8. Klasse - 9. Klasse

Grundlagen zum Thema Die Dichte – eine Stoffkonstante

Was ist Dichte?

Dichte – Definition

Die Dichte $\rho$ ist eine Stoffkonstante und ist der Quotient aus der Masse und dem Volumen eines Stoffes. Die Dichte gibt also das Verhältnis von Masse zum Volumen eines Stoffes an.

Dichte – erklärt anhand von Beispielen

Jeder Stoff hat eine bestimmte Dichte und je größer die gemessene Masse und je kleiner das gemessene Volumen eines Stoffes ist, umso größer ist seine Dichte.

Betrachten wir zwei Gegenstände, die aus dem gleichen Stoff bestehen: zum Beispiel einen Würfel und einen Quader. Der Quader hat das doppelte Volumen des Würfels. Die Verdopplung des Volumens führt zur Verdopplung der Masse. Veranschaulichung des Einflusses des Volumens auf die Masse eines Stoffes

Betrachten wir Gegenstände aus verschiedenen Stoffen mit gleichem Volumen, dann hängt die Masse nur vom Stoff selbst ab. Nehmen wir beispielsweise die Stoffe Titan, Kupfer und Gold. Dann hat der Titanwürfel eine Masse von zweihundert Gramm, der Kupferwürfel ist doppelt so schwer mit etwa vierhundert Gramm, am schwersten aber ist der Goldwürfel, er ist viermal schwerer als der Titanwürfel und immerhin noch doppelt so schwer wie der Kupferwürfel. Die Dichte der verschiedenen Stoffe ist also unterschiedlich. Veranschaulichung des Einflusses der Dichte auf die Masse eines Stoffes

Berechnung der Dichte

Die Einheit der Dichte ergibt sich aus den Einheiten der Masse und des Volumens: Kilogramm pro Kubikmeter $\left(\frac{\text{kg}}{\text{m}^3}\right)$ oder Gramm pro Kubikzentimeter $\left(\frac{\text{g}}{\text{cm}^3}\right)$. Bei Flüssigkeiten ist auch die Einheit Kilogramm pro Liter $\left(\frac{\text{kg}}{\text{l}}\right)$ gebräuchlich.

$\rho=\dfrac{m}{V}$

  • Dichte $\rho$ in $\left[\frac{\text{kg}}{\text{m}^3}, \frac{\text{g}}{\text{cm}^3} \ \text{oder} \ \frac{\text{kg}}{\text{l}^3}\right]$
  • Masse m in $[\text{kg}$ oder $\text{g}]$
  • Volumen V in $[\text{m}^3$, $\text{cm}^3$ oder $\text{l}]$

Beispiele zur Berechnung der Dichte

Nehmen wir einen kleinen Silberbarren und bestimmen sein Gewicht und Volumen, so können wir seine Dichte ganz einfach durch die Division von der Masse durch das Volumen berechnen.

Gegeben
$\text{m}=10~\text{g}$
$\text{V}=0,95~\text{cm}^3$

Gesucht
$^{\small{\rho}}\ _{Silber}$

Rechnung
$\rho=\dfrac{m}{V}$

$\rho=\frac{10~\text{g}}{0,95~\text{cm}^3}=10,53~\frac{\text{g}}{\text{cm}^3}$

Bei $10~\text{g}$ und $0,95~\text{cm}^3$ erhalten wir eine Dichte für das Silber von $10,53~\frac{\text{g}}{\text{cm}^3}$.

Als Nächstes betrachten wir einen Holzwürfel. Zunächst wird wieder die Masse und das Volumen bestimmt.

Gegeben
$\text{m}=31~\text{g}$
$\text{V}=43~\text{cm}^3$

Gesucht
$^{\small{\rho}}\ _{Holz}$

Rechnung
$\rho=\dfrac{m}{V}$

$\rho=\frac{31~\text{g}}{43~\text{cm}^3}=0,72~\frac{\text{g}}{\text{cm}^3}$

Bei $31~\text{g}$ und $43~\text{cm}^3$ erhalten wir eine Dichte für den Holzwürfel von $0,72~\frac{\text{g}}{\text{cm}^3}$.

Dichte – Anwendung

Dichtemessungen werden vor allem in der Qualitätskontrolle eingesetzt, so zum Beispiel in der Industrie. Dafür gibt es mehrere Messverfahren wie beispielsweise das aräometrische, das pyknometrische und das Biegeschwinger-Verfahren. Anhand der Dichte können Stoffe identifiziert, ihre Qualität oder Reinheit überprüft oder ihre Konzentrationen bestimmt werden.

Dichte und die Anomalie des Wassers

Die Dichte ist allgemein abhängig von der Temperatur, wobei die Dichte von Stoffen in der Regel mit steigender Temperatur abnimmt. Bei Wasser trifft diese Regel jedoch erst ab einer Temperatur oberhalb von 4 °C zu. Wasser hat bei 4 °C seine größte Dichte und dehnt sich unterhalb dieser Temperatur wieder aus, bis es bei 0 °C zu Eis erstarrt. Dies wird als Dichteanomalie des Wassers bezeichnet.
Im erstarrten Zustand (Eis) liegt eine geringere Dichte vor als im flüssigen Zustand, wodurch Eis im flüssigen Wasser schwimmt.

Dichte verschiedener Stoffe bei 20 °C und Normaldruck – Tabelle

Stoff Dichte in g/cm³
Kork 0,15
Holz (lufttrocken) 0,4 – 0,9
Wasser 1,0
Beton 1,8 – 2,5
Glas 2,5 – 2,6
Aluminium 2,7
Eisen 7,9
Kupfer 8,9
Silber 10
Gold 19
2 Kommentare
2 Kommentare
  1. ES IST COOL UND MAN LERNT DADURCH AUCH WAS

    Von Milina, vor etwa einem Monat
  2. wirklich interessantes video, team digital kann am besten erklären😏😀😃😉😎

    Von Jonah, vor etwa 2 Monaten