Röntgenstrahlung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Röntgenstrahlung Übung
-
Beschreibe, wie Röntgenstrahlung entsteht.
TippsRöntgenstrahlen können die Haut durchleuchten. Woher kennst du dieses Verb sonst?
Was zeichnet die Schalen im Atom aus?
LösungLicht kann alle möglichen Frequenzen besitzen. Das sichtbare Licht liegt bei ca. $10^{15} Hz$. Röntgenstrahlung ist auch Licht allerdings mit weit höherer Frequenz im Bereich von $10^{17} Hz$ bis $10^{19} Hz$.
Aber Röntgenstrahlung ist nicht nur frequenzspezifisch. Auch die Art der Entstehung charakterisiert sie. Wenn sehr schnelle Elektronen abgebremst werden, entstehen Röntgenphotonen. Ihre Energie ist genau diejenige, die zum Abbremsen der Elektronen nötig ist und kann variieren. In der Physik sagt man dazu: Die Energie kann kontinuierliche Werte annehmen.
Aber auch wenn Elektronen im Atom auf eine dem Kern nähere Schale springen erzeugen sie Photonen. Die Energie dieser Photonen ist genau die Energiedifferenz zwischen den Schalen. Damit können diese Photonen nur ganz spezifische, man sagt auch diskrete Werte annehmen. Solche Übergänge im Atom erzeugen Röntgenstrahlung, wenn die Energiedifferenz zwischen den Schalen besonders hoch ist. Das ist zum Beispiel beim Übergang auf die K-Schale (die dem Kern nächste Schale) zutreffend.
-
Gib die Abhängigkeiten der Energie von Röntgenphotonen an.
TippsErinnere dich, wie die diskrete und wie die kontinuierliche Röntgenstrahlung entsteht.
LösungDie Energie der diskreten Röntgenstrahlung hängt von den Phasenübergängen in den Energieniveaus des Anodenmaterials ab. Ein Elektron springt von einer äußeren (beispielsweise der L-Schale) auf die K-Schale. Dabei wird ein Photon mit der Energiedifferenz dieser beiden Schalen freigesetzt.
Dagegen ist die Bremsstrahlung kontinuierlich. Sie entsteht durch Abbremsprozesse der Elektronen, die auf die Anode geschossen werden.
-
Beschreibe wie eine Röntgenröhre aufgebaut ist.
TippsWelche Teilchen treffen auf die Platte?
Welche Funktion erfüllen die angelegten Spannungen?
LösungWir sehen hier den schematischen Aufbau einer Röntgenröhre. Ein Stromkreis sorgt dafür, dass am Glühdraht Elektronen austreten. Die angelegte Spannung nennt man Heizspannung $U_h$. Hierbei ist im Gegensatz zur Beschleunigungsspannung $U_a$ unwichtig, in welche Richtung der Strom fließt. Letztere soll die Elektronen zur Anode hin beschleunigen. Daher muss der Strom im Uhrzeigersinn fließen. Der Glühdraht ist also unsere Kathode, denn von hier kommen die Elektronen.
Die Pfeile, die von der Röntgenröhre wegzeigen, stehen für die Röntgenstrahlen.
-
Beschreibe das Röntgenspektrum
TippsÜberlege welcher Teil der Röntgenstrahlung diskret bzw. kontinuierlich ist. Wie könnte sich dies auf das Spektrum auswirken?
LösungDas Spektrum der Röntgenstrahlung besteht aus zwei wesentlichen Elementen. Einer kontinuierlichen Bremsstrahlung, die zu höheren Energien hin abnimmt (Bereich III) sowie diskreten Peaks. Diese werden durch die Elektronenübergänge im Atom erzeugt. Die höhere Energie hat dabei der Übergang mit der größeren Energiedifferenz. Dies ist hier die $K_{\alpha}$-Linie. Sie bezeichnet den Übergang von der M auf die K-Schale (Bereich I). Die $K_{\beta}$-Linie ist auch diskret aber weniger Energiereich, da das Elektron hier nur von der L- auf die K-Schale springt (Bereich II).
-
Gib den Frequenzbereich der Röntgenstrahlung an.
TippsWurdest du schon einmal geröntgt? Konntest du die Strahlen sehen?
LösungRöntgenstrahlen sind Licht. Allerdings können wir sie nicht sehen, da ihre Wellenlänge zu kurz ist (zwischen $10^{-8}$ m und $10^{-11}$ m). Daher haben sie eine sehr hohe Energie, was sie ziemlich gefährlich macht.
Wenn wir die Röntgenstrahlen sehen könnten, wäre es für uns möglich, wie mit einem Röntgenapparat zu sehen. Zumindest solange Röntgenstrahlung im Raum vorhanden ist.
-
Berechne die Energie der Röntgenstrahlung.
TippsAus welcher Energie speist sich die Energie der Bremsstrahlung?
Lösung$E_b$ entsteht beim Abbremsen des Elektrons. Seine kinetische Energie $E_{kin}$ wird komplett umgewandelt und zwar sowohl in Wärmeenergie $E_W$ als auch in die Energie der Bremsstrahlung $E_b$. Daraus folgt:
$E_{Kin} = E_b + E_W \leftrightarrow E_b = E_{Kin} - E_W $.
$E_{Kin}$ berechnen wir über:
$E_{Kin} = \frac{1}{2} m_e \cdot v^2 = \frac{1}{2} \cdot 9,1 \cdot 10^{-31} kg \cdot (1,33 \cdot 10^{8} \frac{m}{s})^2 = 8,05 \cdot 10^{-15} J = 50,24 keV$.
Damit folgt: $E_b = 50,24 keV - 30 keV = 20,24 keV$.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.224
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie