Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Beschleunigte Bewegung – Darstellung im Diagramm

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 15 Bewertungen
Die Autor*innen
Avatar
Team Digital
Beschleunigte Bewegung – Darstellung im Diagramm
lernst du in der 8. Klasse - 9. Klasse - 10. Klasse - 11. Klasse

Beschleunigte Bewegung – Darstellung im Diagramm Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Beschleunigte Bewegung – Darstellung im Diagramm kannst du es wiederholen und üben.
  • Tipps

    Die Beschleunigung ist die Geschwindigkeit pro Zeiteinheit.

    Lösung

    Die Beschleunigung beschreibt, wie schnell sich die Geschwindigkeit eines Objekts in einem bestimmten Zeitraum ändert. Die Beschleunigung hat das Formelzeichen $a$ und die Einheit $\dfrac{\text{m}}{\text{s}^2}$.


    • Die Beschleunigung ist die Rate, mit der die Geschwindigkeit eines Objekts zunimmt oder abnimmt.
    $\implies$ Diese Antwort ist richtig.


    • Die Beschleunigung ist die Rate, mit der sich die Zeit eines Objekts ändert.
    $\implies$ Diese Antwort ist falsch.


    • Die Beschleunigung ist die Entfernung, die ein Objekt in einer bestimmten Zeit zurücklegt.
    $\implies$ Diese Antwort ist falsch.


    • Die Beschleunigung ist die Masse eines Objekts.
    $\implies$ Diese Antwort ist falsch.
  • Tipps

    Die Beschleunigung ist die Änderung der Geschwindigkeit pro Zeiteinheit.

    Die Formel für die zurückgelegte Strecke ist quadratisch in der Zeit.

    Die durchschnittliche Geschwindigkeit setzt sich aus dem Quotienten der zurückgelegten Strecke und der Zeit in einem Abschnitt zusammen.

    Die Geschwindigkeit ist proportional zu der Zeit.

    Lösung

    Folgende Begriffe und Formeln passen zueinander:


    1. $a=\dfrac{v}{t}~\Longleftrightarrow$ Beschleunigung


    2. $s=\dfrac{1}{2}\cdot a\cdot t^2+v_0\cdot t~\Longleftrightarrow$ zurückgelegte Strecke


    3. $v=\dfrac{\Delta s}{\Delta t}~\Longleftrightarrow$ durchschnittliche Geschwindigkeit


    4. $v=a\cdot t + v_0~\Longleftrightarrow$ Geschwindigkeit

  • Tipps

    Die Geschwindigkeit kann wie im Beispiel bei einem Beschleunigungs-Zeit-Diagramm als Rechteck unter der horizontalen Linie ermittelt werden.

    Die Geschwindigkeit kann über die Formel $v=a\cdot t$ bestimmt werden.

    Die Wertepaare können auf den Achsen der Beschleunigung und der Zeit abgelesen und sie können mit der Formel für die Geschwindigkeit berechnet werden.

    Lösung

    Bei einer gleichmäßigen Beschleunigung ist die Fläche unter der Kurve eines Beschleunigungs-Zeit-Diagramms ein Rechteck. Die Größe dieses Rechtecks entspricht der Änderung der Geschwindigkeit während des entsprechenden Zeitintervalls. Die Wertepaare können aus dem Diagramm abgelesen werden und sie können über die Flächenformel eines Rechtecks, was der Formel für die Geschwindigkeit entspricht, berechnet werden.


    Folgende Informationen lesen wir aus dem Beschleunigungs-Zeit-Diagramm ab:

    • Die Beschleunigung ist konstant bei $a=2{,}5~\dfrac{\text{m}}{\text{s}^2}$.
    • Die Zeit beträgt $t=\pu{25 s}$.

    Diese Werte können wir jetzt in die Formel für die Geschwindigkeit einsetzen:

    $v=a\cdot t=\pu{2,5\dfrac{m}{s^2}}\cdot \pu{25 s}=\pu{62,5 \dfrac{m}{s}}$

    Somit beträgt die Endgeschwindigkeit nach $25$ Sekunden gleichmäßiger Beschleunigung $62$ Meter pro Sekunde.

  • Tipps

    Trage zunächst passend zu der Zeit $t$ die Geschwindigkeit $v$ ein.

    Die einzelnen Abschnitte stellen einen linearen Verlauf der Geschwindigkeit dar.

    Um die verschiedenen Werte für die Beschleunigung $a$ zu ermitteln, müssen wir jeweils die Differenz aus Endpunkt und Anfangspunkt eines Abschnitts über die Formel $a=\dfrac{\Delta v}{\Delta t} $ berechnen.

    Mit der Beschleunigung $a$ können wir nun auch die zurückgelegte Strecke ermitteln: Die Abschnitte müssen wir als Teilstrecken betrachten und die Strecke kann über die Formel $\Delta s=\dfrac{1}{2}\cdot a\cdot \left(\Delta t\right)^2+v_{vorher}\cdot \Delta t$ berechnet werden.

    Lösung

    Das Geschwindigkeits-Zeit-Diagramm stellt eine ungleichmäßige Beschleunigung dar, denn die Geschwindigkeit nimmt manchmal stark und manchmal weniger stark zu. Allerdings kann man sehen, dass die Geschwindigkeitszunahme zwischen den verschiedenen Zeitpunkten linear verläuft.
    Wir betrachten die Abschnitte einzeln und können die Beschleunigung $a$ und die zurückgelegte Strecke $s$ der Teilabschnitte bestimmen.


    Zunächst lesen wir die passenden Geschwindigkeiten zu den Zeiten ab. Haben wir die Wertepaare für die Geschwindigkeit und Zeit, berechnen wir die Beschleunigung $a$ über diese Formel:

    $\Delta a=\dfrac{\Delta v}{\Delta t}=\dfrac{v_2-v_1}{t_2-t_1}$

    Die Werte eines Endpunkts und Anfangspunkts für einen Abschnitt setzen wir ein und berechnen die Beschleunigung:

    $a_1=\dfrac{v_2-v_1}{t_2-t_1}=\dfrac{\pu{5 \dfrac{m}{s}}-\pu{0 \dfrac{m}{s}}}{\pu{5 s}-\pu{0 s}}=\pu{1\dfrac{m}{s^2}}$

    $a_3=\dfrac{v_2-v_1}{t_2-t_1}=\dfrac{\pu{10 \dfrac{m}{s}}-\pu{5 \dfrac{m}{s}}}{\pu{15 s}-\pu{10 s}}=\pu{1\dfrac{m}{s^2}}$

    $a_5=\dfrac{v_2-v_1}{t_2-t_1}=\dfrac{\pu{20 \dfrac{m}{s}}-\pu{17,5 \dfrac{m}{s}}}{\pu{25 s}-\pu{20 s}}=\pu{0,5\dfrac{m}{s^2}}$


    Aus der Beschleunigung und der abgelesenen Geschwindigkeit bestimmen wir nun die zurückgelegte Strecke über folgende Formel:

    $\Delta s=\dfrac{1}{2}\cdot a\cdot (\Delta t)^2+v_{vorher}\cdot \Delta t$

    Jetzt ermitteln wir die zurückgelegte Strecke für Abschnitte durch das Einsetzen der Zeit, der Beschleunigung und der Geschwindigkeit:

    $\Delta s_2=\dfrac{1}{2}\cdot a\cdot (\Delta t_2)^2+v_{vorher}\cdot \Delta t=\dfrac{1}{2}\cdot \pu{0\dfrac{m}{s^2}} \cdot (\pu{10 s - 5 s})^2+\pu{5 \dfrac{m}{s}}\cdot\pu{10 s - 5 s}=\pu{25\dfrac{m}{s^2}}$

    $\Delta s_4=\dfrac{1}{2}\cdot a\cdot (\Delta t_4)^2+v_{vorher}\cdot \Delta t=\dfrac{1}{2}\cdot \pu{1,5\dfrac{m}{s^2}} \cdot (\pu{20 s - 15 s})^2+\pu{10 \dfrac{m}{s}}\cdot\pu{20 s - 15 s}=\pu{68,75\dfrac{m}{s^2}}$

  • Tipps

    Ein Weg-Zeit-Diagramm für eine gleichmäßig beschleunigte Bewegung zeigt eine parabelförmige Kurve.

    Ein Geschwindigkeits-Zeit-Diagramm für eine gleichmäßig beschleunigte Bewegung zeigt eine lineare Zunahme.

    Ein Geschwindigkeits-Zeit-Diagramm für eine ungleichmäßig beschleunigte Bewegung zeigt eine gekrümmte Linie, die die nicht lineare und variierende Beschleunigung über die Zeit darstellt.

    Ein Beschleunigungs-Zeit-Diagramm zeigt eine horizontale Linie, also eine konstante Beschleunigung über die Zeit.

    Lösung

    1. Ein Beschleunigungs-Zeit-Diagramm einer gleichmäßig beschleunigten Bewegung zeigt eine konstante Beschleunigung: eine horizontale Linie über die Zeit.


    2. Ein Geschwindigkeits-Zeit-Diagramm für eine gleichmäßig beschleunigte Bewegung zeigt eine lineare Gerade der Geschwindigkeit über die Zeit.


    3. Ein Weg-Zeit-Diagramm für eine gleichmäßig beschleunigte Bewegung zeigt eine parabelförmige Kurve.


    4. Ein Geschwindigkeits-Zeit-Diagramm für eine ungleichmäßig beschleunigte Bewegung zeigt eine gekrümmte Linie, die eine nicht lineare und variierende Beschleunigung über die Zeit darstellt. Es lassen sich lineare Abschnitte finden, in denen die Beschleunigung konstant bleibt.

  • Tipps

    Die Beschleunigung kann über die Formel $s=\dfrac{1}{2}\cdot a \cdot t^2$ berechnet werden.

    Die Endgeschwindigkeit kann über die Formel $v=a\cdot t$ ermittelt werden.

    Die Wertepaare können aus dem Weg-Zeit-Diagramm für $s$ und $t$ abgelesen werden.

    Setze die Werte für $s$ und $t$ in die Formel $s=\dfrac{1}{2}\cdot a\cdot t^2$ ein und forme nach der Beschleunigung $a$ um.

    Mit der Beschleunigung $a$ kann die Endgeschwindigkeit über $v=a\cdot t$ berechnet werden.

    Lösung

    Das Weg-Zeit-Diagramm beschreibt den Verlauf der zurückgelegten Strecke einer gleichmäßigen beschleunigten Bewegung nach der Zeit. Aus der Kurve lassen sich die Wertepaare für die Strecke $s$ und die Zeit $t$ ablesen. Anschließend kann mithilfe des Weg-Zeit-Gesetzes die Beschleunigung berechnet werden. Hat man die Beschleunigung, kann dann über das Geschwindigkeits-Zeit-Gesetz die Endgeschwindigkeit bestimmt werden.

    Folgende Informationen lassen sich aus dem Diagramm ablesen:

    • für die Strecke: $s=\pu{344 m}$
    • für die Zeit: $t=\pu{25 s}$

    Laut Weg-Zeit-Gesetz gilt diese Formel:

    $s=\dfrac{1}{2}\cdot a \cdot t^2$

    Für die Berechnung der Beschleunigung $a$ stellen wir die Formel durch Multiplizieren von $2$ und durch Dividieren durch $t^2$ um:

    $s=\dfrac{1}{2}\cdot a \cdot t^2~\Leftrightarrow~\dfrac{2\cdot s}{t^2}=a$

    Jetzt setzen wir die Werte ein und ermitteln die Beschleunigung:

    $a=\dfrac{2\cdot s}{t^2}=\dfrac{2\cdot \pu{344 m}}{(\pu{25 s})^2}=\pu{1,1\dfrac{m}{s^2}}$


    Mit der berechneten Beschleunigung bestimmen wir mithilfe der Formel des Geschwindigkeit-Zeit-Gesetzes die Endgeschwindigkeit, also mit folgender Formel:

    $v=a\cdot t$

    Wir setzen die Werte für die Beschleunigung und die Zeit ein und berechnen die Endgeschwindigkeit:

    $v=a\cdot t=\pu{1,1\dfrac{m}{s^2}} \cdot \pu{25 s} = \pu{27,5 \dfrac{m}{s}}$

    Die Beschleunigung und die Endgeschwindigkeit betragen für den Verlauf der Bewegung:

    $a=\pu{1,1\dfrac{m}{s^2}}$ und $v=\pu{27,5 \dfrac{m}{s}}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.211

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden