30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Permutationen und Fakultät

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 5.0 / 3 Bewertungen

Die Autor*innen
Avatar
Team Digital
Permutationen und Fakultät
lernst du in der 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Permutationen und Fakultät

Inhalt

Was sind Permutationen?

In Mathe kommen Permutationen zum Beispiel in der Kombinatorik vor. Sie werden auch in der Stochastik verwendet, um Wahrscheinlichkeiten zu berechnen. Permutationen sind Vertauschungen von Objekten. Das können z.B. Ziffern oder Zahlen sein – wie die Augenzahlen beim Würfeln oder Positionen in einer Reihenfolge. Man nennt dann auch jede solche Reihenfolge eine Permutation.

Permutationen – Definition

Setzen wir sieben Objekte in eine Reihe nebeneinander, so erhalten wir eine Reihenfolge oder Anordnung der Objekte. Vertauschen wir zwei Objekte, so ändert sich die Reihenfolge. Wir nennen jede Vertauschung eine Permutation der Objekte. Da durch jede Vertauschung eine neue Reihenfolge entsteht, nennt man manchmal auch die Reihenfolge oder Anordnung selbst Permutation.

Permutation, Anordnung, Umordnung, Reihenfolge, Vertauschung

Berechnet wird in Mathe meistens die Anzahl aller Permutationen – also die Anzahl aller möglichen, verschiedenen Vertauschungen bzw. aller möglichen verschiedenen Reihenfolgen. Setzen wir $7$ Plüschtiere in eine Reihe, so haben wir für die erste Position $7$ Tiere zur Auswahl. Ist die erste Position besetzt, so bleiben für die zweite Position nur noch $6$ Tiere zur Auswahl. Für die beiden ersten Positionen zusammen haben wir dann schon $7 \cdot 6 = 42$ verschiedene Möglichkeiten, die Plüschtiere zu setzen. Weiter geht's: Für die dritte Position sind nur noch $5$ Tiere zur Auswahl, für die vierte Position nur noch $4$. Für die fünfte Position bleiben $3$ Tiere, für die sechste Position $2$ Tiere. Das letzte verbleibende Plüschtier muss auf die einzige noch freie Position. Wir haben also für das siebte Plüschtier keine Wahl mehr, sondern nur noch $1$ Möglichkeit.

Die Anzahl aller Möglichkeiten, die Plüschtiere in eine Reihe zu setzen, ist das Produkt der Anzahlen der Möglichkeiten für die einzelnen Positionen, also $7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$. Wir schreiben das so:

$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5040$

Das Ausrufezeichen heißt in Mathe „Fakultät“. Die Zahl $7!$ – sprich: „$7$ Fakultät“ – ist also die Anzahl aller verschiedenen Anordnungen von $7$ Objekten – z.B. Plüschtieren – in einer Reihe. In diesem Fall gibt es also $5040$ verschiedene Möglichkeiten, die Plüschtiere zu sortieren.

Für eine beliebige natürliche Zahl $n$ ist $n!$ die Anzahl der Permutationen von $n$ Objekten. Als Formel sieht das so aus:

$n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$

Man sagt auch, $n!$ ist die Anzahl der Permutationen einer $n$-elementigen Menge.

Permutationen – Beispiele

Die Anzahl $n!$ der Permutationen von $n$ Elementen kommt in verschiedenen Situationen vor: Zieht man $7$ Objekte aus einer Box – in der Stochastik sagt man auch: aus einer Urne – so gibt es für die erste Ziehung $7$ Möglichkeiten. Legt man das gezogene Objekt nicht in die Box zurück, so gibt es für die zweite Ziehung nur noch $6$ Möglichkeiten, denn es befinden sich nur noch $6$ Objekte in der Box. Für die dritte Ziehung gibt es dann nur noch $5$ Möglichkeiten und so weiter. Die Anzahl aller verschiedenen möglichen Ziehungen ohne Zurücklegen und mit Beachtung der Reihenfolge ist dann:

$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$

Eine Permutation der $7$ Objekte kommt also auch beim Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge zustande.

Verteilt man $7$ Objekte auf $7$ Boxen so, dass jede Box genau ein Objekt erhält, so gibt es wieder $7!$ verschiedene solche Verteilungen: Denn für das erste Objekt hat man $7$ Boxen zur Auswahl, für das zweite nur noch $6$, für das dritte $5$ usw. Die Anordnung der Auswahl der Boxen ist also wieder eine Permutation.

Permutationen – Zusammenfassung

In diesem Video wird der Begriff der Permutation verständlich erklärt. Du erfährst, wie man die Anzahl von Permutationen ausrechnet, und was das mit Anordnungen, Reihenfolgen und dem Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge zu tun hat.

Transkript Permutationen und Fakultät

Es ist Sommerzeit und dutzende Obstsorten sind erntereif. Was man damit alles machen kann? Genau, Marmelaaade. Dass man mit den bunten Gläsern auch richtig toll „Permutationen und Fakultät“ untersuchen kann, schauen wir uns jetzt an. Stell dir vor, du hast verschiedene Marmeladen selbst gekocht oder geschenkt bekommen und möchtest jetzt ein Glas jeder Sorte ins Regal stellen. Wie kann man die Gläser ordnen? Da gibt's bestimmt zwanzig verschiedene Möglichkeiten. Oder noch mehr? Was schätzt du? Fangen wir mal ganz einfach mit einer kleinen Menge an, also M gleich zwei Gläser. Die beiden Gläser können wir auf zwei Arten anordnen. Das notieren wir uns kurz. Kommt nun ein drittes Glas hinzu, gibt es schon vier Möglichkeiten. Nein, Moment sechs Möglichkeiten! Noch ein Glas mehr, und wir haben schon vierundzwanzig Anordnungsmöglichkeiten! Wow, dann schauen wir mal, wie viele Möglichkeiten wir für unsere fünf Gläser finden. Die wollen wir natürlich nicht alle ausprobieren. Stattdessen betrachten wir die Positionen und nehmen uns das erste Glas zur Hand. Wir haben fünf Möglichkeiten, wo wir das erste Glas hinstellen können. Sagen wir mal, es soll hier stehen. Beim nächsten Glas haben wir dann nur noch vier Möglichkeiten. Es kommt einfach mal hier hin. Dann haben wir beim nächsten Glas noch drei mögliche Positionen. Danach noch zwei und beim letzten Glas haben wir eigentlich gar keine Wahl mehr. Wenn wir die Anzahl aller Möglichkeiten mathematisch ausrechnen wollen, müssen wir die Auswahlmöglichkeiten für jedes einzelne Glas multiplizieren. Zuerst hatten wir fünf Platzierungsmöglichkeiten. Danach vier, dann drei, zwei und am Ende nur noch eine Möglichkeit. Wir schreiben hier „P“ für Permutation. Der Begriff leitet sich von dem lateinischen Verb „permutare“ ab, was „tauschen“ bedeutet. Eine Permutation ist nichts anderes als eine Anordnungsmöglichkeit. Die Anzahl der Elemente, die wir ordnen wollen, schreiben wir unten an das P. Genauso können wir es auch für die vier Gläser ausrechnen und kommen auf vierundzwanzig Anordnungsmöglichkeiten, beziehungsweise vierundzwanzig Permutationen. Bei fünf Elementen sind es sogar schon einhundertzwanzig! Da hätten wir ja lange gesessen, um alle Möglichkeiten auszuprobieren. Gut, dass wir eine Abkürzung gefunden haben. Apropos Abkürzung: In der Mathematik liebt man Abkürzungen, weshalb dieses Produkt auch so geschrieben werden kann. Diese Schreibweise wird Fakultät genannt. Das Zeichen findest du sicher auch auf deinem Taschenrechner. „Fünf Fakultät“ sind also einhundertzwanzig. Wenn wir zu unseren fünf Gläsern ein sechstes Glas hinzustellen wollen, haben wir dafür sechs verschiedene Möglichkeiten. Das bedeutet, unsere Anzahl der Permutationen wird mit sechs multipliziert. Das entspricht schon siebenhundertzwanzig Möglichkeiten! Für „n“ Elemente gibt es „n“ Fakultät mögliche Permutationen, also „n“ mal „n minus eins“ mal „n minus zwei“ bis wir dann wieder bei zwei mal eins angekommen sind. In anderen Worten: Man kann eine Menge mit n verschiedenen Elementen auf „n Fakultät“-fache Weise anordnen. Hat es eigentlich eine Auswirkung auf die Anzahl der Anordnungsmöglichkeiten, wenn ein Glas doppelt vorkommt? Oh ja! Das sehen wir schon an unserem Beispiel mit drei Gläsern. Wenn zwei davon nun nicht unterscheidbar, also identisch sind, sind auch diese Anordnungen identisch. Das heißt, wir haben statt sechs nur noch drei Anordnungsmöglichkeiten. Weil wir also die Permutationen, die mehrfach auftreten herausrechnen müssen, teilen wir durch deren Anzahl. Und wenn bei unseren fünf Marmeladengläsern dreimal Kirsche dabei ist, berechnet sich die Anzahl an Permutationen als „fünf Fakultät“ durch „drei Fakultät“ und das ergibt zwanzig verschiedene Anordnungsmöglichkeiten. Unten am P steht also wieder die Anzahl aller Elemente, die vorhanden sind und oben steht die Anzahl der Elemente, die identisch sind. Und was ist, wenn mehrere Sorten doppelt oder mehrfach auftreten? Wenn wir beispielsweise bei acht Gläsern dreimal Kirsche, zweimal Kiwi und zweimal Aprikose haben, rechnen wir „acht Fakultät“ durch „drei Fakultät“ mal „zwei Fakultät“ mal „zwei Fakultät“ und kommen auf Eintausend sechshundertachtzig mögliche Anordnungsmöglichkeiten. Durch Ausprobieren hätten wir das sicher nicht herausgefunden. Bevor wir jetzt aber noch mehr Hunger auf Marmeladenbrötchen bekommen, fassen wir kurz zusammen. Eine Permutation ist nichts anderes als eine Anordnungsmöglichkeit von Elementen. Wir unterscheiden dabei zwischen Permutationen mit einfach auftretenden Elementen und Permutationen mit mehrfach auftretenden Elementen. Im ersten Fall wird eine Menge mit „n unterscheidbaren Elementen“ betrachtet. Sie besitzt „n Fakultät“ verschiedene Permutationen. Im anderen Fall geht es um Permutationen, bei der von den „n Elementen“ einer Menge „k Elemente“ identisch sind. Die Anzahl der möglichen Permutationen berechnet sich dann nach „n Fakultät“ durch „k Fakultät“. Gibt es mehrere Gruppen identischer Elemente, dann muss auch durch mehrere verschiedene „k Fakultäten“ geteilt werden. Jetzt hast du hoffentlich deine Marmelade im Griff, dass dir sowas nicht mehr passiert!

3 Kommentare

3 Kommentare
  1. ich schätze 100 Möglichkeiten

    Von Janek, vor etwa einem Monat
  2. nice

    Von Janek, vor etwa 2 Monaten
  3. nice

    Von Skwara, vor etwa 2 Monaten
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.694

sofaheld-Level

6.389

vorgefertigte
Vokabeln

10.818

Lernvideos

43.876

Übungen

38.597

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden