Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Logarithmusgleichungen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 35 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Logarithmusgleichungen
lernst du in der 9. Klasse - 10. Klasse

Logarithmusgleichungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Logarithmusgleichungen kannst du es wiederholen und üben.
  • Beschreibe, was Logarithmengleichungen sind.

    Tipps

    Ein Logarithmus hat die Form

    $\log_c a=b$.

    Dabei ist

    • $c$ die Basis,
    • $a$ das Argument und
    • $b$ der Logarithmuswert.

    Wenn $5^3=125$ ist, ist umgekehrt

    $\log_5 125=3$.

    Lösung

    Was sind Logarithmengleichungen?

    Dies sind Gleichungen, in denen die Variable im Argument des Logarithmus auftritt: $\log_c x=b$.

    Hier sind einige Beispiele:

    • $\log_{10}x=2$
    • $2\log_2{2x}=6$
    • $\log_2 4x=10$
    • $\log_{25}x=\frac12$.

  • Gib die Lösungen der Logarithmusgleichungen an.

    Tipps

    Die Variable $x$ steht im Argument der Logarithmusgleichung.

    Bei der Potenz ist $x$ das Ergebnis.

    Es ist zum Beispiel

    $\log_2 x=3~\Leftrightarrow~x=2^3=8$.

    Bei einer Gleichung der Form

    $3\log_2 x=9$

    musst du zunächst durch $3$ dividieren.

    Lösung

    Zur Lösung einer Logarithmengleichung verwendet man

    $a ^ b = c ~\Leftrightarrow~ \log_a c=b$:

    • $\log_{10}x=2 ~\Leftrightarrow~ x=10^2=100$.
    • $2\log_2 2x=6 ~\Leftrightarrow~\log_2 2x=3 ~\Leftrightarrow~2x=2^3$. Dies ist äquivalent zu $x=4$.
    • $\log_2 4x=10 ~\Leftrightarrow~ 4x=2^{10}~\Leftrightarrow~ 4x=1024$. Nach Division durch $4$ erhalten wir $x=256$.
    • $\log_{25}x=\frac12 ~\Leftrightarrow~x=25^{\frac12}=\sqrt {25}=5$.
  • Entscheide, ob eine Logarithmusgleichung vorliegt.

    Tipps

    Bei einer Logarithmusgleichung steht die Variable im Argument des Logarithmus.

    Die Lösung einer Logarithmusgleichung ist das Ergebnis einer Potenz.

    Drei der sechs Gleichungen sind Logarithmusgleichungen.

    Lösung

    Wenn man Gleichungen lösen möchte, ist es wichtig zu wissen, welche Art der Gleichung vorliegt:

    • lineare Gleichungen werden durch Umformungen gelöst,
    • quadratische Gleichungen durch die p-q-Formel,
    • Wurzelgleichungen durch Quadrieren,
    • ...
    Logarithmusgleichungen werden durch Potenzieren, die Umkehrung des Logarithmus, gelöst.

    Bei Logarithmusgleichungen steht die Variable im Argument des Logarithmus: $\log_c x=b$.

    Die folgenden Gleichungen sind Logarithmusgleichungen:

    • $2\log_{\frac12}x=-1$
    • $\log_3\frac 13x =6$
    • $\log_4 x+2=4$
    Alle übrigen Gleichungen sind keine Logarithmengleichungen.

  • Ermittle die Lösung der Logarithmusgleichung.

    Tipps

    Verwende die Definition des Logarithmus

    $a ^ b = c ~\Leftrightarrow~ \log_a c=b$.

    Um diese Definition anzuwenden, darf vor dem Logarithmus kein Faktor mehr stehen.

    Die Lösung der Potenzgleichung $\log_a x=b$ ist $x=a^b$.

    Lösung

    Die Gleichung

    $5\log_5 5x=25$

    muss zunächst durch $5$ dividiert werden:

    $\log_5 5x=5$.

    Jetzt wird gemäß der Definition vom Logarithmus umgeformt:

    $5x=5^5=3125$.

    Zuletzt wird durch $5$ dividiert und man erhält die Lösung

    $x=625$.

  • Definiere den Logarithmus.

    Tipps

    Der Logarithmus kehrt das Potenzieren um.

    Wenn du wissen willst, mit welcher Zahl man $2$ potenzieren muss, damit man $32$ erhält, kannst du diesen Term aufstellen:

    $2^x=32$.

    Um diesen Term zu lösen, wird der Logarithmus $\log_2 32=x$ gelöst. Es ergibt sich $x=5$.

    Lösung

    Um Logarithmengleichungen zu lösen, muss man die Definition des Logarithmus anwenden:

    Wenn $a^b=c$ ist, dann gilt, dass $\log_a c=b$ ist.

    Dabei ist

    • $a$ die Basis,
    • $b$ der Exponent sowie
    • $c$ das Ergebnis der Potenz.

  • Bestimme die Lösung der Gleichung.

    Tipps

    Wenn dir das Lösen einer solchen Gleichung wegen des Logarithmusterms zu kompliziert erscheint, ersetze den Logarithmusterm:

    $\frac{2 y} {4}-2 = -3$.

    Forme diese Gleichung nach $y$ um, sodass du dann den Term $\log_3 \frac19 x = y$ erhältst.

    Schließlich solltest du zu einer Gleichung der Form $\log_a x=b$ kommen, welche durch $x=a^b$ gelöst werden.

    Die Lösung ist eine natürliche Zahl.

    Lösung

    Es soll die Gleichung

    $\frac{2 \log_3 \frac19x} {4}-2 = -3$

    gelöst werden.

    Zunächst formt man so lange um, bis der Logarithmusterm alleine steht:

    $\begin{align*} \frac{2 \log_3 \frac19x} {4}-2 &= -3&|&+2\\ \frac{2 \log_3 \frac19x} {4} &= -1&|&\cdot 4\\ 2 \log_3 \frac19x&= -4&|&:2\\ \log_3 \frac19x&=-2. \end{align*}$

    Nun kann die Definition des Logarithmus angewendet werden:

    $\frac19x=3^{-2}=\frac 1{3^2}=\frac 19$.

    Durch Multiplikation mit $9$ erhält man $x=1$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.347

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.943

Lernvideos

37.093

Übungen

34.339

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden