Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zerfallsgleichung und Zerfallsreihen

Die Zerfallsgleichung erklärt den Abbau radioaktiver Atomkerne im Laufe der Zeit. Die Zerfallsreihe verfolgt diese Umwandlung bis zur Stabilität. Finde heraus, wie Halbwertszeit und Zerfallskonstante zusammenhängen und entdecke natürliche Zerfallsreihen. Interessiert? Dies und vieles mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.6 / 45 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Zerfallsgleichung und Zerfallsreihen
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Zerfallsgleichung und Zerfallsreihen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zerfallsgleichung und Zerfallsreihen kannst du es wiederholen und üben.
  • Nenne die Zerfallsgleichung.

    Tipps

    $\lambda$ in die Zerfallskonstante .

    $T_{0,5}$ entspricht der Halbwertszeit des betrachteten Stoffes.

    Lösung

    Die Zerfallsgleichung gibt an, wie viele Teilchen zum Zeitpunkt $t$ noch nicht zerfallen sind.

    Dabei kann man diese in der Form A erfassen:

    $N(t) = N_0 \cdot e^{-\lambda \cdot t} $

    oder in der Form B:

    $N(t) = N_0 \cdot (\frac{1}{2})^{\frac{t}{T_{0,5}}}$.

    Wobei $N(t)$ die Anzahl der noch nicht zerfallenen Teilchen darstellt, $\lambda$ die Zerfallskonstante, welche von der Art der Teilchen abhängt, und $t$ die verstrichene Zeit ist. Betrachtet man die alternative Darstellung B, ist die einzige andere verwandte Variable $T_{0,5}$, was der Halbwertszeit des betrachteten Stoffes entspricht.

    Für sehr große Zeitspannen näher sich die Funktion $N(t)$ immer weiter dem Wert $0$ an, wobei die Geschwindigkeit der Annäherung mit der Zerfallskonstante $\lambda$ oder der Halbwertszeit berücksichtigst wird.

  • Gib an, was die Zerfallsgleichung beschreibt.

    Tipps

    Die Zerfallsgleichung gibt an, wie viele Teilchen eine Ausgangsmenge noch vorhanden sind.

    Eine große Halbwertszeit bedeutet, dass es lange dauert, bis nur noch die Hälfte einer Ausgangsmenge vorhanden ist.

    Lösung

    Die Zerfallsgleichung gibt an, wie viele Teilchen $N$ zu einem bestimmten Zeitpunkt $t$ im Bezug auf eine Ausgangsmenge $N_0$ noch vorhanden sind.

    Dabei richtet sich die Geschwindigkeit des Zerfalls nach der Halbwertszeit $T_{0,5}$ beziehungsweise der *Zerfallskonstanten $\lambda = \frac{ln(2)}{T_{0,5}}$.

    Je größer die Halbwertszeit eines Stoffe ist, desto langsamer zerfällt dieser und desto mehr Teilchen sind über einen langen Zeitraum vorhanden.

    Der Zerfall der Teilchen geschieht dabei in Form von spontanem, radioaktivem Zerfall und lässt sich daher nicht genau voraussagen. Für große Teilchenanzahlen $N_0$ kann mit Hilfe der Zerfallsgleichung jedoch eine genaue Vorhersage über den Zerfall der Teilchen getroffen werden.

  • Berechne $N(t)$ aus der Halbwertszeit.

    Tipps

    $m(t) = m_0 \cdot e^{-\lambda t}$

    $\lambda = \frac{ln2}{T_0,5}$

    Lösung

    Um mit der Halbwertszeit und einer Anfangsmenge eines Stoffes die restliche Menge nach einer bestimmten Zeit zu bestimmen, wird zunächst der Zerfallskoeffizient $\lambda$ berechnet.

    Es gilt :

    $\lambda = \frac{ln2}{T_0,5}$.

    Einsetzen liefert :

    $\lambda = \frac{ln2}{5,3a} = 0,1308 $.

    Mit $m(t) = m_0 \cdot e^{-\lambda t}$ folgt :

    $m(3a) = 3,35 kg \cdot e^{-0,1308 \cdot 3a} = 2.262,82 g $.

    Nach einer Zeit von $ t = 3a$ sind von einer Cobalt-Probe der Größe $3,35 kg$ also noch $ 2.262,82 g$ übrig.

    Nach $ t = 7a$ sind nach analoger Berechnung nur noch $ 1.341,09 g$ übrig.

  • Ermittle $m(t)$ für unterschiedliche Nuklide und Zeitabschnitte.

    Tipps

    Es gilt : $m(t) = m_0 \cdot e^{-\lambda t}$.

    Beachte die Einheit der Zerfallskonstante.

    Für $\lambda = \frac{1}{d} $ muss die vergangene Zeit in Tagen $(d)$ angegeben werden.

    Lösung

    Es gilt die Formel :

    $m(t) = m_0 \cdot e^{-\lambda t}$

    Mit dieser kann der Zusammenhang zwischen der Ausgangsmenge eines Stoffes $m_0$ (zum Beispiel in $g$) und der Menge des übrigens Stoffes nach der Zeit $t$ dargestellt werden.

    Dazu muss die Zerfallskonstante $\lambda$ bestimmt werden. Diese gibt an, wie viel eines Stoffes in welcher Zeit zerfällt. Je größer die Halbwertszeit ist, desto geringer ist der Wert für $\lambda$.

    Am Beispiel der Caesium-Probe $(Cs)$ von $m_0 = 800 g$.

    Diese zerfällt mit $\lambda = 0,023 \frac{1}{a}$ über den Zeitraum $t=4a$ :

    $m(t) = m_0 \cdot e^{-\lambda t} = m(4) = 800g \cdot e^{-0,023 \cdot 4}$ = 729,68 g $ .

  • Zeige die natürlichen Zerfallsreihen.

    Tipps

    Es gibt 4 natürliche Zerfallsreihen.

    Der Name der Reihe gibt an, welches Material zerfällt.

    Manche Reihennamen beinhalten das Anfangs-Nuklid und das End-Nuklid.

    Lösung

    Die 4 natürlichen Zerfallsreihen sind die Abfolgen von Elementen, die durch radioaktiven Zerfall bestimmt sind und in der Natur sehr häufig vorkommen.

    Dazu gehören :

    1.) Die Uran-Thorium-Reihe Diese startet mit dem radioaktiven Uran, welches zu Thorium zerfällt.

    2.) Die Uran-Actinium-Reihe Beginnend bei Uran zerfällt dieses hier zu Actinium.

    3.) Die Neptunium-Reihe

    4.) Die Thorium-Reihe

  • Erkläre warum Zerfallsreihen zum Teil schwer zu entdecken sind.

    Tipps

    Der Mensch kann nur begrenzte Zeiträume beobachten.

    Die Halbwertszeit von Thorium ist, mit $ T_{0,5} = 14,05 Mrd.$ Jahren weitaus größer als die des Kohlenstoffes.

    Massenprozent wird in $\omega$ angegeben.

    Lösung

    Der Kohlenstoff ($C-14$) hat eine Halbwertszeit von etwa $T_{0,5} = 5.730 a$, also eine Zeitspanne, die sehr viel länger ist als das Leben eines Menschen.

    Betrachtet man nun einen Zeitraum von $t=20a$, so wird ersichtlich, dass nach dieser Zeit:

    $\lambda_C$ = e^{-\lambda cdot t}$

    mit : $\lambda = \frac{ln2}{T_{0,5}} = \frac{ln2}{5.730a} = 1,2096 \cdot 10^{-4} $

    folgt : $\omega_C = e^{-1,2096 \cdot 10^{-4}a \cdot 20a} = 99,76%$.

    Nach einer Zeit von 20 Jahren sind also nur $0,24\%$ der Masse des Kohlenstoffes zerfallen.

    In dieser Größenordnung ist eine Abnahme des Stoffes nur schwer nachzuweisen.

    Da es Elemente gibt, deren Halbwertszeit weit über $1$ Millionen Jahre beträgt, wird klar, dass deren Zerfall über Zeiträume, die der Mensch innerhalb seines Lebens beobachten kann, kaum messbar sind.

    Aus diesem Grund werden heute noch Zerfallsreihen entdeckt, obwohl man lange davon ausging, dass diese stabil sind.