Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Verdampfen und Kondensieren

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.3 / 89 Bewertungen
Die Autor*innen
Avatar
Jochen Kalt
Verdampfen und Kondensieren
lernst du in der 7. Klasse - 8. Klasse

Verdampfen und Kondensieren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Verdampfen und Kondensieren kannst du es wiederholen und üben.
  • Beschreibe die dargestellten Prozesse.

    Tipps

    Finde heraus, welcher Aggregatszustand in jedem Gefäß dargestellt ist.

    Wie heißen die Prozesse, die die gezeigten Übergänge von einem Aggregatszustand zum anderen beschreiben?

    Lösung

    In den Abbildungen sind die Aggregatszustände flüssig und gasförmig dargestellt. Das erkennst du an der Anordnung der Teilchen.

    In der oberen Abbildung beginnt der Stoff zu sieden, die Flüssigkeit wird gasförmig wie beim Wasserkochen. Dafür wird Energie benötigt. In der unteren Abbildung kondensiert der Stoff, das Gas wird wieder flüssig. Dabei wird Energie von dem Stoff freigesetzt.

  • Benenne die Ursachen für die beschriebenen Phänomene beim Stoff Wasser.

    Tipps

    Stelle für jedes Beispiel zunächst fest, ob das Wasser vom flüssigen in den festen Aggregatszustand übergeht oder umgekehrt.

    Verdunsten kann Wasser auch bei Temperaturen unterhalb der Siedetemperatur.

    Die Siedetemperatur von Wasser nimmt zu, wenn der Luftdruck steigt, und nimmt ab, wenn der Druck fällt.

    Lösung

    Steigt Wasserdampf beim Kochen in einem Kochtopf auf und bildet Tropfen am Topfdeckel, so findet eine Kondensation statt. Das gasförmige Wasser wird wieder flüssig, weil die Temperatur des Topfdeckels vergleichsweise gering ist, das Wasser also unter die Siedetemperatur abgekühlt wird.

    In allen anderen genannten Beispielen geht das Wasser vom flüssigen in den gasförmigen Aggregatszustand über. Dabei siedet es, sofern die Siedetemperatur erreicht ist. Bei Raumtemperatur verdunstet es. Die Siedetemperatur von Wasser bei Normaldruck liegt bei 100° C. Ändert sich der Luftdruck, ändert sich auch die Siedetemperatur entsprechend.

  • Vergleiche Verdampfungs- und Verdunstungswärme.

    Tipps

    Bei beiden Prozessen liegt dieselbe Aggregatzustandsänderung vor: flüssiges Wasser wird gasförmig.

    Der Unterschied besteht also darin, bei welchen Temperaturen beide Prozesse beobachtet werden können.

    Lösung

    Beim Übergang vom flüssigen in den gasförmigen Zustand (Verdampfen und Verdunsten) kann auch noch eine weitere Gemeinsamkeit beobachtet werde: Das Volumen des Gases, das entsteht, ist deutlich größer (Faktor 1000 bis 2000) als das Volumen der Flüssigkeit. Das liegt daran, dass die Anziehungskräfte zwischen den Teilchen im gasförmigen Zustand so gering sind, dass sich die Teilchen frei im gesamten Raum verbreiten.

  • Berechne die Verdampfungswärme von unterschiedlichen Mengen Wasser.

    Tipps

    Rechne zuerst alle Massen in Kilogramm um.

    Verwende die Formel $Q_{Wasser}=m_{Wasser}\cdot q_{Wasser}$ zur Berechnung der Verdampfungswärme Q der verschiedenen Wassermassen.

    Lösung

    Zur Lösung des Problems müssen die verschiedenen Wassermassen $m$ und die spezifische Verdampfungswärme $q_{Wasser}$ in die Formel: $Q_{Wasser}=m_{Wasser}\cdot q_{Wasser}$ eingesetzt werden.

    So ergibt sich beispielsweise für $m=100~g=0,1~kg$:

    $Q=0,1~kg\cdot 2256~\frac {kJ} {kg}=226~kJ$.

  • Benenne die Stoffe, die bei Raumtemperatur flüssig sind.

    Tipps

    Welche Stoffe sind bei Raumtemperatur definitiv gasförmig?

    Vorsicht: Alkohol hat eine Schmelztemperatur von -114° C, Wasser von 0° C und Eisen von über 1500° C!

    Lösung

    Alkohol und Wasser sind bei Raumtemperatur flüssig, weil ihre Siedetemperatur oberhalb der Raumtemperatur liegt und ihr Schmelztemperatur unterhalb dieser.

    Eisen ist bei Raumtemperatur fest, da sowohl Schmelz- und Siedetemperatur über der Raumtemperatur liegen.

    Helium und Ammoniak sind bei Raumtemperatur gasförmig, da ihre Siedetemperatur unterhalb der Raumtemperatur liegt.

    Das Ammoniak aus dem Chemieunterricht ist genau wie Salzsäure ein in Wasser gelöstes Gas. Dies gilt auch für viele weitere chemische Substanzen.

  • Erkläre, weshalb das Klima am Meer in unseren Breiten relativ mild ist.

    Tipps

    Die Wassertemperaturen an der Oberfläche der Nord- und Ostsee steigen auch im Hochsommer nicht über 20° C.

    Beachte außerdem, dass Nord- und Ostsee außer unter Umständen in sehr strengen Wintern nicht gefrieren.

    Der Salzgehalt des Meeres senkt den Schmelzpunkt des Wassers um etwa zwei Kelvin ab.

    Lösung

    Für die beschriebenen Wetterphänomene spielen die Aggregatzustandsänderungen des Meerwassers keine Rolle. Meerwasser in unseren Breiten erreicht weder den (durch das Salz verringerten) Gefrierpunkt noch den Siedepunkt.

    Wesentlich für die temperaturregulierende Eigenschaft der Meere ist die hohe spezifische Wärmekapazität von Wasser. Um die Temperatur von Wasser zu erhöhen, muss diesem eine große Menge Energie zugeführt werden. Meerwasser speichert also viel Energie, die es ganz langsam und kontinuierlich an die Umgebung abgibt, sobald es kälter wird und damit starke Temperaturabfälle ausgleicht. Im Gegenzug dazu benötigt das Meerwasser viel Energie, um im Frühjahr wieder aufgewärmt zu werden. Stärke Temperaturanstiege werden daher abgemildert.