50 % Halbjahreszeugnis-Aktion —
nur bis 24.02.2019

30 Tage kostenlos testen und anschließend clever sparen.

Tunneleffekt 12:22 min

Textversion des Videos

Transkript Tunneleffekt

Guten Tag, ich bin Georg und heute erzähle ich dir etwas über den Tunneleffekt. Vom Tunneleffekt spricht man dann, wenn ein Teilchen, also ein Elektron zum Beispiel, mit einer bestimmten Energie auf eine Potentialbarriere trifft und eigentlich nicht genug Energie hat, um diese zu überwinden. Man sagt dann: Das Teilchen durchtunnelt diese Barriere. um diesen Effekt besser verstehen zu können, habe ich hier eine Gliederung aufgestellt. Zunächst einmal beschäftigen wir uns mit dem Potentialtopfmodell. Danach werde ich dir etwas zu einfachen Wellenfunktionen sagen. Aus diesen einfachen Wellenfunktionen kann man dann die Aufenthaltswahrscheinlichkeit für die einzelnen Teilchen berechnen. Darum werde ich dir auch noch etwas über die Darstellung der Wahrscheinlichkeitsverteilung erzählen. Wenn wir diese drei Sachen dann zusammen haben, dann können wir den Tunneleffekt ganz gut erklären und besser verstehen. Hier haben wir jetzt das Modell eines Potentialtopfes. Beim Potentialtopfmodell ist es so, dass man möchte, dass sich das Teilchen, also zum Beispiel ein Elektron, in einem ganz bestimmten Bereich aufhalten soll. Und realisiert wird es dadurch, dass ich hier an diesen Seiten zwei unendlich hohe Potentialbarrieren habe. Und dieses Teilchen kann eben diese Potentialbarriere nicht überwinden. Es ist sozusagen hier drin fixiert. Und wie kann ich mir das vorstellen? Naja, zum Beispiel bei einem Atom ist es ja so: Ich habe einen Atomkern, der ist positiv geladen. Er erzeugt uns ein Coulomb-Potential. Um diesen Atomkern herum, in der Atomhülle, hier halten sich die Elektronen auf. Und diese Elektronen können eben aus dem Anziehungsbereich dieses Atomkerns nicht so einfach entfliehen, das heißt, sie sitzen sozusagen auch hier mehr oder weniger fest, können eben nicht weg. Und genauso haben wir das hier auch. Jetzt machen wir einen Sprung in die Welt der Quantenmechanik. Und in der Quantenmechanik ist es so, dass ich jedem Teilchen auch eine Wellenlänge zuordnen kann, nach dem Physiker de Broglie. Diese Wellenlänge kann ich eben wie folgt angeben: λ ist gleich h - und h ist das Plancksche Wirkungsquantum, das ist eine Naturkonstante - und ich habe jetzt h geteilt durch die Wurzel aus zwei mal der Masse des Teilchens, also der Masse des Elektrons in unserem Fall, mal seiner kinetischen Energie. Jetzt kann ich einem Teilchen nicht nur eine Wellenlänge zuordnen, sondern ich kann es auch in einer Funktion beschreiben. Und diese Funktionen, das sind jetzt die einfachen Wellenfunktionen. Und diese Wellenfunktionen haben ein ganz charakteristisches Aussehen. Wie schauen die aus? Also ich habe die Funktion, die nenne ich jetzt mal ψ. Und ich habe mehrere Funktionen. Darum bekommen sie ein Index. Diese Funktionen hängen vom Ort x ab. Und jetzt haben diese Funktionen hier eine Amplitude, die zeichne ich mal mit groß A ein, und eine e-Funktion, e hoch und auch hier wieder ein besonderer Buchstabe, i. Das ist eine komplexe Zahl, also eine komplexe Wellenfunktion. n mal Pi mal x geteilt durch a. Und das n, das kann eine natürliche Zahl sein, also n ist Element der natürlichen Zahlen. Jetzt ist es so, dass sich in unserem Potentialtopf nur Teilchen mit dieser Wellenfunktion wiederfinden, die wie bei einer eingespannten Gitarrensaite ganze Vielfache der halben Wellenlänge sind. Das heißt, wir haben hier stehende Wellen und das kann ich jetzt eben auch so ausdrücken, dass ich sage: λ/2, das soll gleich sein: a geteilt durch n. Und hier sehen wir jetzt auch, wenn wir nochmal in die Wellenfunktion schauen, den Zusammenhang bzw. die Tatsache, dass auch hier in dieser e-Funktion die Information über die Wellenlänge drinsteckt. Und neben der Wellenlänge und der Wellenfunktion kann ich jetzt diesen Teilchen auch Energien zuordnen. Und ich habe jetzt sozusagen noch Energiezustände und da ist es natürlich auch so, dass ich jeder einzelnen Wellenfunktion einen Energiezustand zuordnen kann. Wie sehen diese Energiezustände jetzt aus? Also, auch hier für jede Wellenfunktion ein Energiezustand: En ist gleich h2 mal n2 geteilt durch acht mal der Masse des Elektrons, in unserem Fall, mal a2. Und auch hier sehen wir wieder, dass n geteilt durch a beziehungsweise a durch n dort auch die Information über die Wellenlängen drinsteckt. Das heißt, ich habe jetzt hier den Energiezustand E1, E2, E3 und so weiter. Bisher haben wir in unserem Potentialtopf nur die Wellenfunktion betrachtet und wir wollen jetzt einmal zur Aufenthaltswahrscheinlichkeit kommen. Und die Aufenthaltswahrscheinlichkeit für ein Teilchen, diese berechnet sich über das Betragsquadrat der Wellenfunktion. Und wir sehen eben auch hier, die Aufenthaltswahrscheinlichkeit ist eben eine reelle Größe im Vergleich zur Wellenfunktion, die eine komplexe Größe ist. Ich kann jetzt also hier zu den verschiedenen Energieniveaus die Aufenthaltswahrscheinlichkeit einzeichnen und ich sehe jetzt eben auch explizit, dass sich das Teilchen nur mit einer gewissen Wahrscheinlichkeit immer innerhalb dieses Potentialtopfes aufhalten wird. Das heißt, ich kann jetzt auch hier sagen: Dieser Bereich innerhalb ist erlaubt und außerhalb ist eben verboten, klassisch verboten. Jetzt machen wir folgendes: Unsere Potentialbarrieren, die bisher immer unendlich hoch waren, wollen wir jetzt nur noch endlich hoch machen. Und in dem Moment, wo die Potentialbarrieren endlich hoch werden, passiert folgendes. Die Wellenfunktionen können ein stück weit in die verbotenen Bereiche eindringen und darum ergibt sich jetzt auch eine Aufenthaltswahrscheinlichkeit des Teilchens innerhalb dieser verbotenen Bereiche. Und das ist im Prinzip auch jetzt die Ursache für den Tunneleffekt. Und was jetzt eben genau hier in diesen verbotenen Bereichen passiert, das schauen wir uns einmal genauer an. Wir betrachten nun einmal den Übergang der Wellenfunktion an solch einer Potentialbarriere der Höhe E0. Ich habe also hier mein Teilchen, das ich über eine Wellenfunktion ψ beschreiben kann. Diese Wellenfunktion trifft jetzt auf diese Potentialbarriere und kann eben in diese Potentialbarriere eindringen. Wenn das Teilchen jetzt hier eindringt, dann erfährt es eine exponentielle Dämpfung. Also die Wellenfunktion erfährt eine exponentielle Dämpfung und diese Dämpfung wird eben um diesen Faktor e-αx stattfinden. Wenn ich jetzt diese Potentialbarriere auch noch endlich breit mache, dann kann diese Wellenfunktion hier am Ende wieder austreten und sich weiter fortsetzen. Und das ist jetzt auch schon der Tunneleffekt. Man sagt eben: Das Teilchen hat diese Potentialbarriere durchtunnelt, obwohl seine Energie eben nicht ausreichen würde, um diese Potentialbarriere zu überwinden. Jetzt müssen wir natürlich hier noch ein bisschen Erklärungsarbeit leisten an diesem Bild. Wir sehen schon: Ich habe hier auch wieder eine Wellenfunktion. Ich nenne sie mal ψ-Welle. Diese hat sowohl eine Amplitude A-Welle als auch eine Wellenlänge λ-Welle. Und was jetzt interessant ist, dass die Wellenlängen hier draußen bei dieser Wellenfunktion und hier bei dieser Wellenfunktion gleich geblieben sind. Wie können wir uns das erklären? Naja, wir haben ja immer noch das Elektron, was hier zum Beispiel das durchgetunnelte sein soll, und nach de Broglie hat dieses ja eine feste Wellenlänge. Das heißt, die Lambdas müssen gleich sein. Wir sehen aber auch: Die Amplituden haben sich deutlich verändert und wenn wir uns jetzt nochmal die Wellenfunktion anschauen, da ist es ja so, dass die Wellenfunktion über die Amplitude A auch gegeben ist. Und jetzt, in einem weiteren Schritt, gucken wir auf die Aufenthaltswahrscheinlichkeit, und das ist ja das Betragsquadrat der Wellenfunktion. Das heißt, hier drin, wo ich eine große Amplitude habe, habe ich eben auch mitunter eine große Aufenthaltswahrscheinlichkeit, und hier, außerhalb des Potentialtopfes eben bei einer kleinen Amplitude, auch nur eine sehr kleine Aufenthaltswahrscheinlichkeit. Und das ist jetzt im Prinzip schon das, was man dazu sagen kann. Wir sehen jetzt eben auch: Je breiter oder auch je höher diese Potentialbarriere ist, umso geringer wird auch die Amplitude werden, weil die Dämpfung dann immer weiter beziehungsweise immer stärker stattfinden wird und dementsprechend dann auch die Aufenthaltswahrscheinlichkeit außerhalb diese Potentialtopfes immer geringer werden wird. Auf der anderen Seite ist es ja so, dass bei sehr hohen Teilchenenergien die Aufenthaltswahrscheinlichkeit außerhalb wieder größer sein wird, weil es eben länger dauert, bis bei hohen Energien eine Dämpfung auf einen bestimmten Wert stattfindet. Damit sind wir jetzt auch schon am Ende angekommen. Ich mache noch einmal eine ganz kurze Zusammenfassung: Wir hatten eben das Teilchen, dem wir eben eine Wellenlänge zuordnen können. Darüber hinaus, jetzt in der Quantenmechanik, beschreiben wir diese Teilchen mit einer Wellenfunktion, wo eben auch die Informationen der Wellenlänge drinsteckt. Ganz, ganz wichtig eben auch: Die Aufenthaltswahrscheinlichkeit wird über das Betragsquadrat der Wellenfunktion angegeben. Und das sind alles quantenmechanische Mechanismen und Formalismen. Und dieser Tunneleffekt ist eben auch ein rein quantenmechanischen Phänomen. Damit sage ich Tschüss und bis zum nächsten Mal.

4 Kommentare
  1. Karsten

    @ Matthias G.: Wenn du unter „Fotoeffekt" suchst findest du gleich 2 Videos zur Erklärung und 2 mit Anwendung.

    Von Karsten Schedemann, vor mehr als 3 Jahren
  2. Default

    Mhhh das Video ist sehr hilfreich aber ich habe da eine Frage:
    Könnten sie vielleicht ein paar mehr Videos zum Thema Quantenphysik machen?
    Speziell Photoeffekt?

    Von Matthias G., vor mehr als 3 Jahren
  3. Default

    Danke :)

    Von Lisa Liebtihrefreunde, vor mehr als 3 Jahren
  4. Default

    Hallo!!!
    Finde das Video sehr hilfreich... Nur bin ich total verwirrt, weil es ja ein potenzialtopfmodell mit Protonen und Neutronen gibt und das lineare potenzialtopfmodell mit den Elektronen , welches Sie gerade in dem Video vorgestellt haben...
    Nur was hat das alles miteinander zu tun oder sind das zwei komplett verschiedene Modelle?

    Von Lisa Liebtihrefreunde, vor mehr als 3 Jahren