Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Quantenzahlen im Atom

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 3 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Quantenzahlen im Atom
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Quantenzahlen im Atom Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Quantenzahlen im Atom kannst du es wiederholen und üben.
  • Definiere die Quantenzahlen.

    Tipps

    Das Energieniveau beschreibt man ohne die Zahl Null.

    Die Ausrichtung des Orbitals beschreibt man mithilfe der Form der Elektronenschale.

    Die Drehachse eines Elektrons wird entweder positiv oder negativ ausgerichtet.

    Lösung

    Um jedes Elektron in einem Atom genau zu beschreiben, werden 4 Quantenzahlen benötigt. Diese beschreiben alle möglichen Energiezustände, die ein Elektron annehmen kann.

    Die Hauptquantenzahl, die das Energieniveau eines Elektrons beschreibt, nimmt die Werte von 1, 2, 3, 4 (nur natürlichen Zahlen) und so weiter an und wird so angegeben: $n=1,2,3,4,…,∞$.

    Die Nebenquantenzahl, die die Form der Elektronenschale beschreibt, nimmt die Werte von 0 bis n-1 an und wird so angegeben: $l=0,1,2,3,…,n-1$.

    Die Orientierungsquantenzahl, die die Ausrichtung des Orbitals beschreibt, nimmt die Werte von -l bis +l an und wird so angegeben: $m=-l,…,+l$.

    Die Spinquantenzahl, die die Ausrichtung der Drehachse eines Elektrons beschreibt, nimmt nur die Werte -1/2 oder+1/2 an und wird so angegeben: $s=±1/2$.

  • Fasse die Eigenschaften der Quantenzahlen zusammen.

    Tipps

    Das Energieniveau beschreibt man ohne die Zahl Null.

    Die Ausrichtung des Orbitals beschreibt man mithilfe der Form der Elektronenschale.

    Die Drehachse eines Elektrons wird entweder positiv oder negativ ausgerichtet.

    Lösung

    Für eine bessere Aussicht können die Eigenschaften der Quantenzahlen in eine Tabelle zusammengefasst werden. Sie sind in der folgenden Tabelle unter Bezeichnung, Quantenzahl, Atomraum, Größe, (physikalische) Bedeutung und Elektronenkonfiguration zugeordnet.

    $\begin{array}{c|c|c|c|c} \small{\text{ Quantenzahlen }} & \small{n= 1,2,3,4,…,\infty} & \small{ l=0,1,2,3,…,n-1} & \small{m=-l,…,+l} & \small{s=±1/2} \\ \hline & & & \small{\text{ Orientierungs-}} & \\ \small{\text{Bezeichnung}} & \small{\text{Hauptquantenzahl}} & \small{\text{ Nebenquantenzahl}} & \small{\text{ Quantenzahl}} & \small{\text{Spinquantenzahl}} \\ \small{\text{ Atomraum}} & \small{\text{ Hauptschale}} & \small{\text{ Unterschale }} & \small{\text{ Orbitale }} & \\ \small{\text{ Größe}} & \small{\text{ Energie}} & \small{\text{ Bahndrehimpuls}} & \small{\text{ magnetisches Moment}} & \small{\text{ Spinzustand}} \\ \small{\text{ Bedeutung}} & \small{\text{ Energieniveau}} & \small{\text{ Orbitalform}} & \small{\text{ Orbitalausrichtung}} & \small{\text{ Spinausrichtung}} \\ \small{\text{ Elektronen-}} & & & & \\ \small{\text{ Konfiguration}} & \small{K, L, M, N, …} & \small{s, p, d, f, g, …} & \small{2l+1\ \text{pro}\ l } & \\ \end{array} $

    Es ist es wichtig, Folgendes an der Tabelle zu merken. Die Spinquantenzahl bezieht sich nur auf den Spinzustand eines Elektrons (oder eines Systems). Außerdem ist der Spinzustand keine physikalische Größe, sondern ein Zustand. Deswegen spricht man kaum über Atomraum und Elektronenkonfiguration für diese Quantenzahl.

  • Zeige auf dem Diagramm die Elektronen eines Calcium-Atoms, die die bestimmten Quantenzahlen-Kombinationen besitzen.

    Tipps

    Jedes Elektron hat seine eigene Quantenzahlkombination.

    Lösung

    Ein Calcium-Atom besitzt in seiner Hülle 20 Elektronen, die abhängig von seinen Zuständen in verschiedene Schalen verteilt sind. Diese Zustände werden mit Quantenzahlkombinationen bezeichnet und können in einem Energiediagramm dargestellt werden.

    In diesem Energiediagramm gibt die Hauptquantenzahl $n$ an, auf welchem Energieniveau das Elektron sich befindet.
    Die Nebenquantenzahl $l$ gibt uns dann den Block an. Ist sie 0, ist das erste Kästchen gemeint. Ist sie 1, ist das zweite Kästchen gemeint.
    Die Orientierungsquantenzahl $m$ gibt uns an, welche Spalte im zweiten Kästchen (mit 3 Spalten) gemeint ist. Ist sie -1, ist die erste Spalte des zweiten Kästchens gemeint. Ist sie +1, die dritte Spalte. Da das erste Kästchen nur eine Spalte hat, ist $m = 0$.
    Die Spinquantenzahl $s$ wird durch die Pfeile dargestellt. Ist der Pfeil nach oben gerichtet, ist $s=+\frac { 1 }{ 2 } $. Ist der Pfeil nach unten gerichtet, ist $s=-\frac { 1 }{ 2 } $.

  • Bestimme die Quantenzahlen der jeweiligen Orbitale.

    Tipps

    Die negative Werte von m wurden ausgeschlossen, da die Ausrichtung der Orbitale der Richtung der dritten Achse entspricht.

    Lösung

    Auf dem Diagramm sieht man die Orbitale von Elektronen: auf der linken Seite die s-Orbitale von den Energieniveaus $n=1$ zu $n=3$.
    Auf dem Energieniveau $n=2$ liegen auch die p-Orbitale vor. Diese unterscheiden sich von den s-Orbitalen durch eine Nebenquantenzahl von $l=1$. Zur Unterscheidung der p-Orbitale in x, y und z. wird diesen noch eine Magnetquantenzahl $m$ von +1 bis -1 zugeteilt.
    Auf dem Energieniveau $n=3$ liegen zusätzlich noch d-Orbitale vor. Die d-Orbitale unterscheiden sich von den s- und p-Orbitalen durch eine Nebenquantenzahl von $l=2$. Zur Unterscheidung der d-Orbitale in wird diesen noch eine Magnetquantenzahl $m$ von +2 bis -2 zugeteilt.

    Für die genaue Zuordnung ist zu wissen, das immer dem z-Orbital die Magnetquantenzahl $m=0$ zugeordnet wird.

  • Gib an, was über die Quantenzahlen und über die Aufenthaltswahrscheinlichkeiten stimmt.

    Tipps

    Dürfen Elektronen die gleiche Bahn besetzen?

    Lösung

    Die Quantenzahlen beschreiben den Zustand nicht nur von Elektronen, sondern auch von allen Teilchen eines Atoms. Sie beschreiben sogar auch physikalische Systeme wie zum Beispiel das Atom selber, das aus verschiedenen Teilchen besteht.

    Die gleichen vier Quantenzahlen sind einzigartig für jedes Elektron in einem Atom. Das heißt, ihre Kombination wirkt wie ein Ausweis für jedes Elektron. Jedes Elektron hat seinen eigenen Ausweis und das unterscheidet sie voneinander.

    Die Aufenthaltswahrscheinlichkeiten sind nicht die gleichen für alle Elektronen. Dafür gibt es einen einfachen Grund: das Zusammenstoßen zwischen Elektronen im Atom zu vermeiden. Hätten sie die gleichen Aufenthaltswahrscheinlichkeiten, würden sie die gleiche Kombination von vier Quantenzahlen besitzen und sich voneinander nicht unterscheiden lassen. Außerdem sind die Aufenthaltswahrscheinlichkeiten von Elektronen winkelabhängig, damit ihre Bahnform das niedrigste mögliche Energieniveau besitzt.

  • Gliedere die Elektronen eines Eisenatoms nach ihren Quantenzahlen.

    Tipps

    Hast du schon das Beispiel bemerkt?

    Welche Zahlen in der Elektronenkonfiguration entsprechen dem Energieniveau?

    Welche Quantenzahl entspricht den Niveau-Buchstaben?

    Lösung

    Die Elektronenkonfiguration ist eine andere Weise, um die Elektronenorbitale zu bezeichnen. Meistens wird sie in der Chemie dafür verwendet, in Physik hingegen die Quantenzahlkombination. Obwohl es leichter ist, ein Orbital mit der Elektronenkonfigurationsschreibweise zu erkennen, verwendet man in der Physik die Quantenzahlkombination. Es geht darum, dass die Quantenzahlkombination zweckmäßige physikalische Größen beschreiben. Deswegen ist es wichtig, die beiden Schreibweisen zu unterscheiden und das Verhältnis zwischen einander zu erkennen.

    Die Hauptschalen in der Elektronenkonfiguration werden in der Quantenzahlschreibweise mit der Hauptquantenzahl $n$ bezeichnet. Die Nebenquantenzahl $l$ und Orientierungsquantenzahl $m$ zeigen, wie viele Elektronen es pro Hauptschale gibt. Für jeden Wert von $l$ gilt ein Elektronenkonfigurationsbuchstabe. Für $l=0$, $s$; für $l=1$, $p$; für $l=2$, $d$. Für jeden Wert von $m$ gibt es normalerweise zwei Elektronen.

    Bei $1{ s }^{ 2 }$ zum Beispiel befinden sich zwei Elektronen in der ersten Hauptschale. Dieser Orbital wird mit der Quantenzahlkombination $ n=1,l=0,m=0$ beschrieben. In der zweiten Hauptschale gibt es acht Elektronen, die den Orbitalen $2{ s }^{ 2 }$ und $2{ p }^{ 6 }$ entsprechen. Das Orbital $2{ s }^{ 2 }$ wird mit der Quantenzahlkombination $n=2,l=0,m=0$ (2 Elektronen) und $2{ p }^{ 6 }$ mit der Quantenzahlkombination $n=2,l=1,m=-1,0,+1$ (6 Elektronen) bezeichnet. In der dritten Hauptschale gibt es 14 Elektronen, die den Orbitalen $3{ s }^{ 2 }$, $3{ p }^{ 6 }$ und $3{ d }^{ 6 }$ entsprechen. Die drei Orbitale $3{ s }^{ 2 }$, $3{ p }^{ 6 }$ und $3{ d }^{ 6 }$ werden je mit den Quantenzahlkombinationen $n=3,l=0,m=0$ (2 Elektronen); $n=3,l=1,m=-1,0,+1$ (6 Elektronen) und $n=3,l=2,m=-1,0,+1$ (6 Elektronen) angegeben.

    Da das Orbital $3d$ mehr Energie als das Orbital $4s$ enthält, wird es nicht ganz ausgefüllt. Stattdessen bekommt Orbital $4s$ die übrigen Elektronen. Deswegen wurden bei der Quantenzahlkombination für das Orbital $3{ d }^{ 6 }$ die Werte $m=-2,+2$ ausgeschlossen. Orbital $4{ s }^{ 2 }$ wird mit den zwei übrigen Elektronen durch die Quantenzahlkombination $n=4,l=0,m=0$ angegeben.

    Die nachstehende Tabelle fasst das Verhältnis zwischen der Elektronenkonfigurations- und der Quantenzahlschreibweise zusammen.

    $\begin{array}{c|c} \text{Elektronenkonfiguration} & \text{Quantenzahlen} \\ \hline 1{ s }^{ 2 } & n=1, l=0, m=0 \\ 2{ s }^{ 2 } & n=2, l=0, m=0 \\ 2{ p }^{ 6 } & n=2, l=1, m=-1,0,1 \\ 3{ s }^{ 2 } & n=3, l=0, m=0 \\ 3{ p }^{ 6 } & n=3, l=1, m=-1,0,1\\ 4{ s }^{ 2 } & n=4, l=0, m=0 \\ 3{ d }^{ 6 } & n=4, l=2, m=-1,0,1\\ \end{array}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.374

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.943

Lernvideos

37.093

Übungen

34.339

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden