Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Isolator, Halbleiter, Leiter

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.6 / 13 Bewertungen
Die Autor*innen
Avatar
Philip Rupp
Isolator, Halbleiter, Leiter
lernst du in der 8. Klasse - 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Isolator, Halbleiter, Leiter Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Isolator, Halbleiter, Leiter kannst du es wiederholen und üben.
  • Gib an, welche der gezeigten Stoffe den elektrischen Strom leiten.

    Tipps

    Was befindet sich in einem Stromkabel und sollte der Stoff den elektrischen Strom leiten?

    Aus welchem Material besteht eine Steckdose und wäre es gut, wenn es leiten würde?

    Warum darf man keine elektronischen Geräte mit in die Badewanne nehmen oder bei Gewitter ins Meer gehen?

    Kohle besteht zu einem Großteil aus Graphit. Was bedeutet das für die Leitfähigkeit?

    Lösung

    Alle Metalle leiten den Strom. Die meisten Metalle sind fest und glänzen. Auch Graphite leiten den Strom. Graphite sind Mineralien. Graphit ist eine bestimmte Strukturform des Kohlenstoffs. Der Diamant bildet eine weitere Strukturform des Kohlenstoffs. Im Gegensatz zum Diamanten leitet aber Graphit den elektrischen Strom. Kohle besteht zum Großteil aus Graphit, deswegen leitet Kohle den Strom. Wenn ein Material genügend Bestandteile hat, die Strom leiten, dann ist auch das Material leitend. Deswegen leitet auch (mineralisiertes) Wasser. Es leitet nicht das Wasser an sich, sondern die Mineralien, die in dem Wasser vorhanden sind. Destilliertes Wasser leitet nicht.

    Gummi oder Kunststoff leitet den Strom nicht. Es wird häufig verwendet, um dich vor Strom von elektrischen Geräten oder Kabeln zu schützen. Darum kannst du zum Beispiel ein Staubsaugerkabel ohne Angst vor einem Stromschlag in die Steckdose stecken. Sowohl der stromführende Leiter als auch die Steckdose sind mit einem Isolator abgedeckt. In dem Moment, wenn der Stecker komplett eingesteckt ist, ist nach außen kein Metall mehr freiliegend.

    Du kannst auch selbst ausprobieren, ob ein Gegenstand elektrischen Strom leitet oder nicht. Dazu musst du nur einen Stromkreis mit einer Glühlampe und einer Unterbrechung bauen.

    Dazu brauchst du eine kleine Glühlampe mit Fassung (z.B. Fahrradlampe), eine Flachbatterie (4,5 V), drei Kabel mit Krokodilklemmen und den Gegenstand, von dem du wissen willst, ob er Strom leitet. Frag deine Eltern, ob sie dir bei dem Aufbau helfen, damit auch nichts schiefgeht.

    Du schraubst die Lampe in die Fassung und verbindest die eine Seite der Fassung mithilfe eines Kabels mit einem Pol der Batterie. An der anderen Seite der Fassung bringst du ebenfalls ein Kabel an. Auch an dem zweiten Pol der Batterie bringst du noch ein Kabel an.

    Wenn du nun die beiden Enden der losen Kabel verbindest, sollte die Lampe leuchten, es fließt ein elektrischer Strom. Um nun zu testen, ob dein Gegenstand den Strom leitet, hältst du die beiden losen Kabelenden an den Gegenstand. Achte dabei darauf, dass die Enden der Kabel sich nicht berühren. Wenn die Lampe leuchtet, dann ist der Gegenstand ein Leiter.

  • Beschreibe das Bändermodell und seine Bestandteile.

    Tipps

    Im Valenzband befinden sich Elektronen mit geringerer Energie.

    Elektronen mit viel Energie tragen zur Leitfähigkeit bei.

    Elektronen können nur bestimmte Energien haben.

    Lösung

    Um ein Bändermodell zu erstellen, trägt man die Elektronen eines Materials in ein Energiediagramm ein. Elektronen haben unterschiedlich hohe Energien. In einem gewissen Bereich eines Energiediagramms sammeln sich mehrere Elektronen an. Man nennt diesen Bereich ein Band. Es gibt verschiedene Bänder und die Elektronen, die sich in diesen befinden, haben unterschiedliche Eigenschaften und Funktionen. Im Valenzband befinden sich die Elektronen, die fest an die Atomkerne gebunden sind. Diese können nicht zu einem elektrischen Strom beitragen.

    Die Elektronen, die sich im Leitungsband befinden, tragen zur Leitfähigkeit bei. Sie können sich frei im Material bewegen und deswegen einen elektrischen Strom erzeugen, wenn ein elektrisches Feld angelegt wird.

    Die Bandlücke liegt zwischen dem Valenzband und dem Leitungsband. Wenn einem Elektron genug Energie zugeführt wird, steigt es im Energiediagramm nach oben. Es springt dabei vom Valenzband ins Leitungsband. Die Bandlücke gibt dabei an, wie viel Energie einem Elektron aus dem Valenzband zugeführt werden muss, damit es ins Leitungsband springen kann.

    In einem Isolator ist die Bandlücke groß, unter normalen Bedingungen leitet ein Isolator deswegen keinen Strom. Es müsste den Elektronen extrem viel Energie zugeführt werden, damit diese ins Leitungsband springen. In einem Halbleiter ist die Bandlücke klein. Wenn den Elektronen etwas Energie zugeführt wird, können sie in das Leitungsband springen. Die Leitfähigkeit des Materials steigt dann. In einem Leiter überschneiden sich das Valenzband und das Leitungsband. Auch wenn keine Energie zugeführt wird, befinden sich frei bewegliche Elektronen im Material. Deswegen kann ein Leiter auch ohne Energiezufuhr elektrischen Strom leiten.

    Elektronen können sich nicht zwischen dem Valenzband und dem Leitungsband, also in der Bandlücke, aufhalten.

  • Ergänze die Beschreibungen von Isolatoren, Leitern und Halbleitern.

    Tipps

    Ein elektrischer Strom kann immer dann enstehen, wenn sich Elektronen bewegen können.

    Die Stärke der Bindung zwischen Atomkernen und Elektronen entscheidet, ob die Elektronen sich bewegen können.

    Lösung

    Das Schalenmodell ist ein Atommodell, in dem die Elektronen auf Schalen um den Kern verteilt sind. Die Valenzschale ist hierbei die äußerste Elektronenschale, also die, die am weitesten vom Kern entfernt ist.

    In elektrischen Leitern besteht die Valenzschale aus nur einem, zwei oder drei Elektronen. Das sind nicht genug, um andere Bindungen einzugehen. Deswegen können sich diese Elektronen im Metall frei bewegen. Beim Anlegen einer Spannung entsteht dann ein elektrischer Strom.

    In Isolatoren dagegen ist die Valenzschale voll besetzt und die Elektronen sind deswegen fest mit dem Atomkern verbunden. Nur mit sehr hoher Energiezufuhr könnten diese Elektronen herausgelöst werden. Deswegen entsteht in Isolatoren unter normalen Bedingungen kein elektrischer Strom.

  • Ergänze die Beschreibung des Bändermodells.

    Tipps

    Können fest gebundene Elektronen zu einem elektrischen Strom beitragen?

    Ein elektrischer Strom kann entstehen, wenn sich Elektronen bewegen können.

    Wie beim Schalenmodell können Elektronen ihre Energie nur sprungweise verändern. Was muss ihnen dazu zugeführt werden?

    Lösung

    Die Elektronen die sich im Valenzband befinden, sind an das Atom gebunden. Die Elektronen, die sich im Leitungsband befinden, sind frei beweglich. Da nur frei bewegliche Elektronen zu einem elektrischen Strom beitragen, kann kein elektrischer Strom entstehen, wenn sich kein Elektron im Leitungsband befindet.

    Um Elektronen vom Valenzband ins Leitungsband zu befördern, muss die Bandlücke überwunden werden. Die Elektronen können sich nicht zwischen den Bändern aufhalten, denn wie bei dem Schalenmodell kann die Energie eines Elektrons nicht kontinuierlich, sondern nur sprungweise variiert werden. Es braucht genug Energie, um in die nächste Schale zu springen oder vom Atom entfernt zu werden. Dazu muss dem Elektron Energie von außen zugeführt werden. Dies kann zum Beispiel durch elektrische Energie, Wärme oder auch durch die Zufuhr von Licht erreicht werden.

    Bei Isolatoren ist die Bandlücke sehr groß. Es müsste also extrem große Energie aufgewendet werden, um frei bewegliche Elektronen und damit einen möglichen elektrischen Strom zu erhalten.

    Bei Halbleitern ist die Bandlücke klein. Somit muss nur eine gewisse Energie aufgebracht werden, zum Beispiel Wärme, um eine Leitfähigkeit des Materials zu erzeugen.

    Bei Leitern überschneiden sich Valenzband und Leitungsband, somit leitet ein Leiter auch ohne Energiezufuhr den elektrischen Strom.

  • Gib an, was ein Isolator, ein Leiter und ein Halbleiter ist

    Tipps

    Die meisten Metalle sind fest und glänzen und leiten den elektrischen Strom.

    Elektriker tragen Stiefel aus Gummi, um sich vor dem elektrischen Strom zu schützen.

    Womit ist ein Kabel ummandelt und was befindet sich im Inneren? Welcher dieser Stoffe sollte leiten?

    Lösung

    Metalle sind meistens fest und glänzen. Metalle leiten den elektrischen Strom, denn in ihnen sind die Elektronen nur sehr schwach mit dem Atomkern verbunden. Sie können sich deswegen bewegen und dadurch einen Strom leiten.

    In Isolatoren sind die Elektronen fest mit dem Kern verbunden. Wird dort ein elektrisches Feld angelegt, können sich die Elektronen trotzdem nicht bewegen und es passiert gar nichts. Isolatoren findest du zum Beispiel in der Ummantelung von Kabeln. Im Inneren von stromführenden Kabeln befindet sich ein Leiter und um den Benutzer vor dem Strom zu schützen, wird das Kabel mit einem Isolator abgedeckt. Denn wenn du einen stromführenden Leiter ohne Isolator anfassen würdest, bekämest du einen Stromschlag. Deswegen werden alle stromführenden Bauteile mit einem Isolator abgedeckt.

    Halbleiter leiten bei tiefen Temperaturen nicht. Dann sind die Elektronen an den Atomkern gebunden und können sich nicht bewegen. Führt man jedoch Wärme zu, dann erhöht sich die Energie der Elektronen und einige Elektronen können sich von den Atomkernen lösen und zu einem elektrischen Strom führen. Je höher die Temperatur ist, desto mehr Elektronen können sich bewegen und deswegen nimmt die Stromstärke mit höherer Temperatur zu.

  • Erkläre anhand des Bändermodells die Zunahme der Leitfähigkeit von Halbleitern mit steigender Temperatur.

    Tipps

    Den Elektronen muss zuerst Energie zugeführt werden, damit sie in ein höheres Band springen können.

    Wenn ein Elektron nicht genug Energie hat, um sich in einem Band aufzuhalten, dann springt es in das Tiefere zurück.

    Je mehr Elektronen zum elektrischen Strom beitragen können, desto höher ist die Leitfähigkeit.

    Lösung

    Die Elektronen, die fest an den Atomkern gebunden sind, entsprechen denen, die sich im Valenzband befinden. Wenn ein elektrisches Feld angelegt wird, tragen diese nicht zum elektrischen Strom bei. Die Elektronen, die sich frei im Material bewegen können, entsprechen den Elektronen, die sich im Leitungsband befinden. Diese können zum elektrischen Strom beitragen.

    Wird einem Elektron Energie zugeführt, dann fängt es nach kurzer Zeit an zu schwingen. Irgendwann hat das Elektron genug Energie aufgenommen, um sich vom Atom zu lösen und im Bändermodell springt es in ein höheres Band. Bei Halbleitern findet die Energiezufuhr meistens in Form von Wärme statt, dies muss aber nicht so sein. Auch andere Energieformen wie Lichtenergie oder elektrische Energie können die Energie von Elektronen erhöhen.

    Die Bandlücke gibt an, wie viel Energie ein Elektron aufnehmen muss, um in das nächsthöhere Band zu springen. Da bei Halbleitern die Bandlücke klein ist, können die Elektronen verhältnismäßig leicht in ein höheres Band springen. Sie müssen nur wenig Energie dafür aufnehmen. Die Energie, die ein Elektron aufnehmen muss, um in das Leitungsband zu springen, ist meist in der Höhe von einem Elektronenvolt ($eV$), aber zumindest kleiner als drei $eV$. Manche Elektronen haben gerade genug Energie aufgenommen, um ins Leitungsband zu springen. Da sie aber aufgrund von Wechselwirkungen einen Teil verlieren, haben sie nicht mehr genug Energie, um sich im Leitungsband aufzuhalten.

    Deswegen müssen sie wieder zu einem tieferen Energieniveau, also dem Valenzband, zurückkehren. Es ist hierbei unwahrscheinlich, dass das Elektron am exakt selben Platz landet, deswegen verändert sich die Verteilung der Elektronen und damit auch die Verteilung der „Löcher“, welche sie zurücklassen, stetig.

    Da immer ein Loch zurückbleibt, wenn ein Elektron ins Leitungsband springt, ist das Verhältnis zwischen Löchern und freien Elektronen gleich. Es entsteht dadurch ein zusätzlicher Strom, diesen nennt man p-Strom oder Eigenleitung.

    Je mehr Energie den Elektronen zugeführt wird, desto mehr springen ins Leitungsband und können zu einem elektrischen Strom beitragen. Deswegen wird dann auch die Eigenleitung größer. Da das Verhältnis gleich ist, nimmt die Leitfähigkeit mit steigender Temperatur extrem zu.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.938

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.907

Lernvideos

36.936

Übungen

34.195

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden