Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Bändermodell in Festkörpern

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.5 / 8 Bewertungen
Die Autor*innen
Avatar
Sandra Haufe
Bändermodell in Festkörpern
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Bändermodell in Festkörpern Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Bändermodell in Festkörpern kannst du es wiederholen und üben.
  • Definiere die folgenden Begriffe zum Thema Bändermodell in der Festkörperphysik.

    Tipps

    Die Begriffe stehen in einem logischen Zusammenhang zueinander.

    Lösung

    Im Bändermodell der Festkörperphysik sind zwei Bandtypen besonders wichtig, um die Leitfähigkeit eines Festkörpers abzuschätzen und zu erklären.

    Die Zuordnung dieser Bänder erfolgt bei 0 Kelvin. Für diese Temperatur wird ermittelt, welche Bänder vollständig mit Elektronen besetzt sind. Das energiereichste dieser Bänder wird Valenzband genannt. Über dem Valenzband liegt das Leitungsband. Dieses ist teilweise oder gar nicht mit Elektronen besetzt.

    Zwischen Valenzband und Leitungsband kann es einen Energiebereich geben, in dem sich keine Elektronen aufhalten dürfen. Dieser Bereich heißt deshalb verbotene Zone oder Bandlücke.

    Bei 0 Kelvin kann außerdem die Fermi-Energie für jeden Festkörper angegeben werden. Das ist die Energie, die ein Elektron bei dieser Temperatur maximal besitzen kann.

  • Vergleiche die Eigenschaften von Leitern, Halbleitern und Isolatoren.

    Tipps

    Leiter im Bändermodell

    Halbleiter im Bändermodell

    Isolator im Bändermodell

    Lösung

    Leiter wie Metalle besitzen keine Bandlücke zwischen Valenz- und Leitungsband. Sie besitzen daher eine sehr hohe Leitfähigkeit.

    Isolatoren wie Kunststoffe hingegen besitzen eine große Lücke von über drei Elektronenvolt zwischen Valenz- und Leitungsband. Ihre Leitfähigkeit ist daher sehr gering.

    Halbleiter wie Silizium oder reiner Kohlenstoff besitzen zwar eine Bandlücke, doch liegt diese unter drei Elektronenvolt. Sie sind daher ab einer bestimmten Temperatur ebenfalls gute Leiter.

  • Beurteile die Aussagen zum Bändermodell in der Festkörperphysik.

    Tipps

    Die Energie welcher Objekte wird im Bändermodell betrachtet?

    Wie sind die Begriffe Valenzband, Leitungsband, Energielücke und Fermi-Energie definiert?

    Zur elektrischen Leitung sind frei bewegliche Elektronen notwendig.

    Innerhalb der Bänder können die Elektronen jede Energie besitzen.

    Lösung

    In einem einzelnen Atom besitzen die Elektronen der Atomhülle diskrete Energieniveaus. Nähert man jedoch Atome dicht an, wie dies in Festkörpern geschieht, so verschwimmen diese Energieniveaus zu Bändern. Das liegt daran, dass nicht mehr jedes Elektron eindeutig einem Atom zugeordnet werden kann. Ein Elektron besitzt nun keinen fest vorgeschriebenen Energiewert mehr, sondern einen Energiebereich, in dem es sich bewegen kann.

    Die Lage und Anordnung dieser Bänder ist für jeden Festkörper anders und bestimmt seine Leitungseigenschaften. Es gibt jedoch definitionsgemäß immer nur ein Valenzband und ein Leitungsband, wobei die Fermi-Energie oberhalb des Valenzbandes liegt.

    Freie Elektronen, die zur Stromleitung dienen können, entstehen nur in Bändern, die nicht voll besetzt sind. Überlappen sich Valenz- und Leitungsband wie bei Leitern, so reichen bereits geringe Energien aus, um Elektronen ins Leitungsband zu heben. Liegt zwischen Valenz- und Leitungsband eine Bandlücke, so benötigen Elektronen mindestens die Energiedifferenz der Bandlücke, um ins Leitungsband zu gelangen. Da diese bei Halbleitern nicht so hoch ist, werden diese ab bestimmten Temperaturen leitend.

  • Erkläre, was bei der Dotierung von Halbleitern geschieht.

    Tipps

    Was für Fremdatome werden in den Leiter eingebracht?

    Diese besitzen Elektronen mit besonderen Eigenschaften. Was können diese Elektronen?

    Wie wirken sich diese Elektronen auf die Leitfähigkeit des Halbleiters aus?

    Lösung

    Die Dotierung von Halbleitern bewirkt eine gezielte Verbesserung der Leitfähigkeit unter den technisch jeweils gewünschten Bedingungen.

    Bei einer n-Dotierung erhält der Halbleiter zusätzliche Elektronen im Leitungsband. Bei einer p-Dotierung hingegen werden positive bewegliche Ladungen im Valenzband erzeugt.

  • Ordne den gezeigten Bandverteilungen die zu erwartenden Leitungseigenschaften zu.

    Tipps

    Welche Stoffe besitzen keine Bandlücke zwischen Valenz- und Leitungsband?

    Bei welchen Stoffen ist die Bandlücke kleiner als drei Elektronenvolt?

    Bei welchen Stoffen ist sie größer als drei Elektronenvolt?

    Lösung

    In der schematischen Darstellung der Bänder unterscheidet man Leiter, Halbleiter und Isolatoren nach den Eigenschaften ihrer Bandlücken. Die Bandlücke umfasst den Energiebereich von der Oberkante des Valenzbandes bis zur Unterkante des Leitungsbandes. Die Energiedifferenz zwischen diesen beiden Niveaus ist in den Abbildungen angegeben. Ist die y-Achse mit Zahlenwerten versehen, kann man sie auch selbst aus der Differenz dieser beiden Grenzen rechnerisch ermitteln.

    Stoffe, die keine Bandlücke zwischen Valenz- und Leitungsband besitzen, gehören zu den Leitern. Stoffe mit einer geringen Bandlücke von unter drei Elektronenvolt zählen zu den Halbleitern. Liegt die Bandlücke über dem Wert von drei Elektronenvolt, so spricht man von Isolatoren.

  • Ordne der gezeigten Bandverteilung die zu erwartende Leitungseigenschaft zu.

    Tipps

    Richtig: Hier gibt es einen Stolperstein. Aber wo genau?

    Lösung

    Der dargestellte Festkörper existiert nicht. Er zeigt eine unzulässige Eigenschaft: Die Fermi-Energie liegt im Valenzband. Dies würde bedeuten, dass bei 0 Kelvin Elektronen auch Energien oberhalb der Fermi-Energie erreichen könnten. Und dies ist ganz ausdrücklich nicht erlaubt!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.347

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.943

Lernvideos

37.093

Übungen

34.339

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden