Senkrechter Wurf nach oben

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Der waagerechte Wurf – Wurfweite, Wurfdauer und Bahnform

Der waagerechte Wurf – Aufprallgeschwindigkeit und Aufprallwinkel

Schiefer Wurf – Überlagerung von Bewegungen

Schiefer Wurf – mathematische Beschreibung der Flugbahn

Schiefer Wurf (Vertiefung)

Der senkrechte Wurf

Senkrechter Wurf nach oben

Waagerechter Wurf (Übungsvideo)
Senkrechter Wurf nach oben Übung
-
Gib an, was Superposition ist.
TippsErinnere dich an das Kräfteparallelogramm.
Kann man einzelne Vektoren getrennt betrachten?
LösungSuperposition ist ein sehr interessantes Phänomen. Bei diesem wirken mehrere Kräfte unabhängig voneinander auf einen Körper ein. Die Bewegung, die er vollführt, ist zwar das Ergebnis der gemeinsamen Auswirkung aller wirkenden Kräfte, jedoch kann zeitgleich jeder dieser Vektoren für sich allein betrachtet werden.
Dieses Prinzip wurde bereits bei der Addition von Kräften angewendet. Auch wenn die Vektoren in dieselbe Richtung zeigen, stören sich diese nicht, sondern lassen sich ungestört addieren.
-
Gib die Formeln zur Beschreibung eines senkrechten Wurfes nach oben an.
TippsÜberlege dir, was beim senkrechten Wurf passiert und was mit den Formeln bestimmt werden soll.
$t_{1/2}$ gibt die Zeiten an, zu denen der geworfenen Gegenstand eine bestimmte Höhe h hat.
LösungEs gibt viele Formeln, die den senkrechten Wurf nach oben beschreiben. Alle Formeln haben die Gemeinsamkeit, dass die Bewegung zunächst mit der Anfangsgeschwindigkeit $v_0$ nach oben erfolgt. Diese Bewegung wird durch die Erdanziehungskraft abgebremst. Daher geht $ g$ entgegengesetzt zu $v_0$ in die Gleichung ein. Dies wird durch das negative Vorzeichen abgebildet. Die Bremswirkung vergrößert sich mit der Zeit, daher wird $ g$ mit $t$ multipliziert. Alle vier Formeln beschreiben den senkrechten Wurf nach oben.
Die Formel $t_{1/2}\,=\,\frac{v_0}{g}\,\pm\,\frac{1}{g}\,\sqrt{v_0^2\,-\,2hg} $ beschreibt dabei die Zeitpunkte, zu denen der geworfene Körper eine bestimmte Höhe h hat und ist damit eine Funktion in Abhängigkeit von h.
-
Bestimme, zu welcher Zeit das Geschenk am Fenster der Freundin vorbeifliegt.
TippsBei einem senkrechten Wurf nach oben ist das Objekt auf einer bestimmten Höhe entweder kein, einmal oder zweimal zu sehen. Je nachdem, ob der Umkehrpunkt unter, auf oder über dieser Höhe liegt.
LösungBei einem senkrechten Wurf nach oben ist das Objekt auf einer bestimmten Höhe entweder kein, einmal oder zweimal zu sehen. Je nachdem, ob der Umkehrpunkt unter, auf oder über dieser Höhe liegt.
Mit der Formel $t_{1/2}\,=\,\frac{v_0}{g}\,\pm\,\frac{1}{g}\,\sqrt{v_0^2\,-\,2hg}$ können wir die möglichen Zeitpunkte bestimmen. Es ist eigentlich eine Funktion in Abhängigkeit von der Höhe h.
Gegeben:
$v_0\,=\,40\,\frac{m}{s}$$~~~~$$g\,=\,9,81\,\frac{m}{s^2}$$~~~~$$h\,=\,10\,m$
Gesucht:
$t_1$ und $t_2$ in Sekunden.
Das $\pm$ sorgt dafür, dass wir 2 Fälle betrachten.
Die Werte können wir ohne Umformung direkt in die Gleichungen einsetzen und die Lösung der beiden Fälle bestimmen.
$t_{1}\,=\,\frac{v_0}{g}\,-\,\frac{1}{g}\,\sqrt{v_0^2\,-\,2hg}=\,\frac{40\,\frac{m}{s}}{9,81\,\frac{m}{s^2}}\,-\,\frac{1}{9,81\,\frac{m}{s^2}}\,\sqrt{(40\,\frac{m}{s})^2\,-\,2\,\cdot\,10\,m\,\cdot\,9,81\,\frac{m}{s^2}}\,\approx\,0,26\,s$
$t_{2}\,=\,\frac{v_0}{g}\,+\,\frac{1}{g}\,\sqrt{v_0^2\,-\,2hg}=\,\frac{40\,\frac{m}{s}}{9,81\,\frac{m}{s^2}}\,+\,\frac{1}{9,81\,\frac{m}{s^2}}\,\sqrt{(40\,\frac{m}{s})^2\,-\,2\,\cdot\,10\,m\,\cdot\,9,81\,\frac{m}{s^2}}\,\approx\,7,90\,s$
Das Geschenk ist also nach 0,26 s erstmalig für Lisa sichtbar, steigt dann viel weiter nach oben und ist beim freien Fall nach 7,90 s erneut zu sehen.
-
Vergleiche die Bewegung des senkrechten Wurfes auf zwei Himmelskörpern.
TippsÜberlege, was dich zum Boden zieht.
Denke an die Astronauten auf dem Mond.
Überprüfung: Die maximale potentielle Energie bei diesem Wurf ist auf beiden Himmelskörpern gleich groß.
LösungDa die Erdbeschleunigung viel größer ist als die Mondbeschleunigung, steigt ein Objekt auf dem Mond viel länger als auf der Erde. Dadurch erreicht es auch eine viel größere Höhe.
Der Mond beschleunigt das Objekt weniger stark als die Erde, aber da das Objekt jeweils die gleiche Anfangsgeschwindigkeit und somit dieselbe kinetische Energie beim Abwurf besitzt, erreicht es auf beiden Himmelskörpern in seinem Umkehrpunkt dieselbe potentielle Energie.
Für die Zeit bis zur Umkehr gilt:
$t_{Umkehr}=\,\frac{v_0}{g}$
$t_{Umkehr,Erde}=\,\frac{10\,\frac{m}{s}}{9,81\,\frac{m}{s^2}}\approx 1,02s$
$t_{Umkehr,Mond}=\,\frac{10\,\frac{m}{s}}{9,81\,\frac{m}{s^2}}\approx 6,17s$
Für die maximale Flughöhe gilt:
$h=v_0\,\cdot\,t\,-\,\frac{1}{2}\,\cdot\,g\,\cdot\,t^2$.
Nach Einsetzen von $t_{Umkehr}=\frac{v_0}{g}$ für t:
$h=v_0\,\cdot\,\frac{v_0}{g}\,-\,\frac{1}{2}\,\cdot\,g\,\cdot\,\frac{v_0}{g}^2$
$h_{Erde}=10\,\frac{m}{s}\,\cdot\,\frac{10\,\frac{m}{s}}{9,81\,\frac{m}{s^2}}\,-\,\frac{1}{2}\,\cdot\,9,81\,\frac{m}{s^2}\,\cdot\,\frac{10\,\frac{m}{s}}{9,81\,\frac{m}{s^2}}^2\approx 5,10\,m$
$h_{Mond}=10\,\frac{m}{s}\,\cdot\,\frac{10\,\frac{m}{s}}{1,622\,\frac{m}{s^2}}\,-\,\frac{1}{2}\,\cdot\,1,622\,\frac{m}{s^2}\,\cdot\,\frac{10\,\frac{m}{s}}{1,622\,\frac{m}{s^2}}^2\approx 30,83\,m$
-
Beschreibe das Flugverhalten beim senkrechten Wurf nach oben.
TippsWas nach oben fliegt, kommt auch wieder herunter.
Warum steigt das Objekt nicht immer weiter?
LösungJedes Objekt im Gravitationsfeld der Erde wird von dieser angezogen. Die wirkende Kraft ist auf den Erdmittelpunkt gerichtet. Wenn sich ein Objekt entgegen dieser Richtung bewegt, wird es mit der Fallbeschleunigung $g$ abgebremst. Fällt es in dieselbe Richtung wird es mit $g$ zusätzlich beschleunigt.
-
Bestimme die Anfangsgeschwindigkeit des abgebildeten senkrechten Wurfes. Nimm an, dass $g=10\,\frac{m}{s^2}$ ist.
TippsÜberprüfe, welche Werte du dem Diagramm entnehmen kannst.
LösungEs gibt mehrere Wege zum Ziel.
Dem Diagramm können wir entnehmen, dass die maximale Höhe bei 5 Metern liegt, aber auch, dass die Zeit bis zur Umkehr bei einer Sekunde liegt.
Wir können nun beispielsweise sehr einfach mit
$t\,=\,\frac{v_0}{g}$
$v_0$ bestimmen:
$v_0=g \, \cdot t=10\,\frac{m}{s^2}\,\cdot\, 1s=10 m/s$.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.225
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie