Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Besondere Dreiecke mit Vektoren bestimmen

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 28 Bewertungen
Die Autor*innen
Avatar
Frank Steiger
Besondere Dreiecke mit Vektoren bestimmen
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Besondere Dreiecke mit Vektoren bestimmen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Besondere Dreiecke mit Vektoren bestimmen kannst du es wiederholen und üben.
  • Vervollständige den Nachweis der Rechtwinkligkeit des Dreiecks mit den Punkten $A(1|1|2)$, $B(3|1|3)$ und $C(0|4|4)$.

    Tipps

    Du erhältst den Verbindungsvektor zweier Punkte, indem du von dem Ortsvektor des Endpunktes den des Anfangspunktes subtrahierst.

    Du musst nachweisen, dass zwei der drei Verbindungsvektoren $\vec{AB}$, $\vec{AC}$ oder $\vec{BC}$ senkrecht aufeinander stehen.

    Zwei Vektoren $\vec u$ und $\vec v$ stehen senkrecht aufeinander, in Zeichen $\vec u\perp\vec v$, wenn das Skalarprodukt der beiden Vektoren $\vec u\cdot \vec v=0$ ist.

    Lösung

    Wenn drei Punkte gegeben sind und geprüft werden soll, ob diese ein rechtwinkliges Dreieck bilden, muss man zunächst alle (drei!) Verbindungsvektoren bestimmen. Das Skalarprodukt zweier dieser Verbindungsvektoren muss $0$ sein. Dann weiß man, dass diese beiden Vektoren senkrecht aufeinander stehen. Das bedeutet, dass ein rechter Winkel vorliegt.

    Den Verbindungsvektor zweier Punkte erhält man, indem man von dem Ortsvektor des Endpunktes den des Anfangspunktes subtrahiert. Dies ist hier exemplarisch für $\vec{AB}$ zu sehen:

    $\vec{AB}=\begin{pmatrix} 3 \\ 1\\3 \end{pmatrix}-\begin{pmatrix} 1 \\ 1\\2 \end{pmatrix}=\begin{pmatrix} 2 \\ 0\\1 \end{pmatrix}$

    Ebenso können die beiden anderen Verbindungsvektoren bestimmt werden:

    $\vec{AC}=\begin{pmatrix} -1 \\ 3\\2 \end{pmatrix}$

    und

    $\vec{BC}=\begin{pmatrix} -3 \\ 3\\1 \end{pmatrix}$

    Nun kann das Skalarprodukt von $\vec{AC}$ sowie $\vec{AB}$ berechnet werden.

    $\begin{pmatrix} 2 \\ 0\\1 \end{pmatrix}\cdot \begin{pmatrix} -1 \\ 3\\2 \end{pmatrix}=-2+0+2=0$.

    Diese beiden Vektoren stehen senkrecht. Es liegt also ein rechter Winkel in $A$ vor. Warum in $A$? Weil beide Vektoren den Punkt $A$ als End- oder Anfangspunkt haben.

  • Gib an, welches besondere Dreieck bei den Punkten $A(2|0|0)$, $B(0|2|0)$ und $C(0|0|2)$ vorliegt.

    Tipps

    Du musst auf jedem Fall die Verbindungsvektoren der drei Punkte bestimmen.

    Der Verbindungsvektor zweier Punkte ist die Differenz des Ortsvektors des Endpunktes und dem des Anfangspunktes.

    • Entweder stehen zwei Vektoren senkrecht, dann liegt ein rechtwinkliges Dreieck vor,
    • oder zwei Seiten sind gleich lang, also zwei Verbindungsvektoren, dann liegt ein gleichschenkliges Dreieck vor,
    • oder drei Seiten sind gleich lang, also alle drei Verbindungsvektoren, dann liegt ein gleichseitiges Dreieck vor.

    Du erhältst die Länge eines Vektors, indem du jede Koordinate quadrierst, die Quadrate addierst und aus der Summe die Wurzel ziehst.

    Lösung

    Welche möglichen besonderen Dreiecke gibt es?

    • Rechtwinklige Dreiecke: Diese haben einen rechten Winkel.
    • Gleichschenklige Dreiecke: Diese haben zwei gleich lange Seiten.
    • Gleichseitige Dreiecke: Diese haben drei gleich lange Seiten.
    In jedem dieser drei Fälle muss man die (drei!) Verbindungsvektoren der drei Punkte bestimmen. Hierfür wird jeweils vom Ortsvektor des Endpunktes der des Anfangspunktes subtrahiert.

    $\vec{AB}=\begin{pmatrix} -2 \\ 2\\0 \end{pmatrix}$

    $\vec{AC}=\begin{pmatrix} -2 \\ 0\\2 \end{pmatrix}$

    $\vec{BC}=\begin{pmatrix} 0 \\ -2\\2 \end{pmatrix}$

    Natürlich könnte man jetzt prüfen, ob zwei Vektoren senkrecht aufeinander stehen. Da jedoch alle drei Verbindungsvektoren die gleichen Koordinaten (nur in verschiedener Reihenfolge) haben, sind die Längen dieser Vektoren gleich:

    $\left|\begin{pmatrix} -2 \\ 2\\0 \end{pmatrix}\right|=\sqrt{(-2)^2+2^2+0^2}=\sqrt{4+0+4}=\sqrt8$.

  • Prüfe, welches besondere Dreieck mit den Punkten $A(3|1|1)$, $B(7|4|-1)$ und $C(5|1|3)$ vorliegt.

    Tipps

    Die Länge eines Vektors berechnet man, indem man jede Koordinate des Vektors quadriert, die Quadrate addiert und zuletzt die Wurzel aus der Summe zieht.

    Achte darauf, Klammern beim Quadrieren von negativen Zahlen zu verwenden, denn

    • $(-2)^2=4$
    • aber $-2^2=-4$.

    Wenn zwei (drei) Vektoren gleich lang sind, so handelt es sich um eine gleichschenkliges (gleichseitiges) Dreieck.

    Lösung

    Bei der Untersuchung besonderer Dreiecke muss man immer zunächst die Verbindungsvektoren der drei Punkte bestimmen. Diese sind bei den Punkten $A(3|1|1)$, $B(7|4|-1)$ und $C(5|1|3)$:

    $\vec{AB}=\begin{pmatrix} 4 \\ 3\\-2 \end{pmatrix}$

    $\vec{AC}=\begin{pmatrix} 2 \\ 0\\2 \end{pmatrix}$

    $\vec{BC}=\begin{pmatrix} -2 \\ -3\\4 \end{pmatrix}$

    Dann kann man die Länge jedes dieser drei Vektoren berechnen:

    $\left| \begin{pmatrix} 4 \\ 3\\-2 \end{pmatrix} \right|=\sqrt{4^2+3^2+(-2)^2}=\sqrt{29}$

    $\left| \begin{pmatrix} 2 \\ 0\\2 \end{pmatrix} \right|=\sqrt{2^2+0^2+2^2}=\sqrt{8}$

    $\left| \begin{pmatrix} -2 \\ -3\\4 \end{pmatrix} \right|=\sqrt{(-2)^2+(-3)^2+4^2}=\sqrt{29}$

    Gegebenenenfalls könnte das Dreieck auch noch rechtwinklig sein:

    • $\vec{AB}\cdot \vec{AC}=8-4=4$
    • $\vec{AB}\cdot \vec{BC}=-8-9-8=-25$
    • $\vec{AC}\cdot \vec{BC}=-4+8=4$
    Dieses Dreieck ist also gleichschenklig, jedoch nicht rechtwinklig.

  • Entscheide, wie der dritte Punkt des Dreiecks mit $A(3|3|3)$ und $B(6|0|3)$ für die jeweilige Eigenschaft gewählt werden muss.

    Tipps

    Berechne jeweils die Verbindungsvektoren von $A$, beziehungsweise $B$, zu dem dritten Punkt.

    Achte darauf, bei zwei gleich langen Seiten auch noch zu überprüfen, ob gegebenenfalls noch ein rechter Winkel vorliegen kann.

    Zwei Vektoren $\vec u$ und $\vec v$ sind senkrecht zueinander, $\vec u\perp\vec v$, wenn $\vec u\cdot \vec v=0$ ist.

    Lösung

    Der Verbindungsvektor dieser beiden Vektoren ist

    $\vec{AB}=\begin{pmatrix} 3 \\ -3\\0 \end{pmatrix}$

    Die Länge dieses Vektors ist

    $\left|\begin{pmatrix} 3 \\ -3\\0 \end{pmatrix} \right|=\sqrt{3^2+(-3)^2}=\sqrt{18}$.

    Wir starten mit dem Punkt $C(6|6|3)$:

    $\vec{AC}=\begin{pmatrix} 3 \\ 3\\0 \end{pmatrix}$ und $\left|\begin{pmatrix} 3 \\ 3\\0 \end{pmatrix} \right|=\sqrt{3^2+3^2}=\sqrt{18}$.

    Zusätzlich ist $\begin{pmatrix} 3 \\ -3\\0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 3\\0 \end{pmatrix}=9-9=0$.

    Das Dreieck $\Delta_{ABC}$ ist rechtwinklig und gleichschenklig.

    $D(6|3|3)$:

    $\vec{AD}=\begin{pmatrix} 3 \\ 0\\0 \end{pmatrix}$ und $\left|\begin{pmatrix} 3 \\ 0\\0 \end{pmatrix} \right|=\sqrt{3^2}=3$.

    $\vec{BD}=\begin{pmatrix} 0 \\ 3\\0 \end{pmatrix}$ und $\left|\begin{pmatrix} 0 \\ 3\\0 \end{pmatrix} \right|=\sqrt{3^2}=3$.

    Zusätzlich ist $\begin{pmatrix} 3 \\ 0\\0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3\\0 \end{pmatrix}=0$.

    Auch das Dreieck $\Delta_{ABD}$ ist rechtwinklig und gleichschenklig.

    $E(7|1|4)$:

    $\vec{AE}=\begin{pmatrix} 4 \\ -2\\1 \end{pmatrix}$ und $\left|\begin{pmatrix} 4 \\ -2\\1 \end{pmatrix} \right|=\sqrt{4^2+(-2)^2+1^2}=\sqrt{21}$.

    $\vec{BE}=\begin{pmatrix} 1 \\ 1\\1 \end{pmatrix}$ und $\left|\begin{pmatrix} 1 \\ 1\\1 \end{pmatrix} \right|=\sqrt{1^2+1^2+1^2}=\sqrt3$.

    Die Längen stimmen also nicht überein.

    Es ist jedoch $\begin{pmatrix} 1 \\ 1\\1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -3\\0 \end{pmatrix}=3-3=0$.

    Somit ist das Dreieck $\Delta_{ABE}$ rechtwinklig.

  • Beschreibe die Besonderheit des jeweiligen Dreiecks.

    Tipps

    Die Summe der drei Innenwinkel in jedem Dreieck beträgt immer $180^\circ$.

    Ein $90^\circ$ Winkel wird als rechter Winkel bezeichnet.

    Oben rechts siehst du ein allgemeines Dreieck.

    Das grüne Dreieck ist gleichseitig und das orange gleichschenklig.

    Das rote Dreieck ist rechtwinklig.

    Lösung

    Oben rechts ist ein allgemeines Dreieck zu sehen; dieses ist mit Eckpunkten versehen, welche üblicherweise entgegen dem Uhrzeigersinn beschriftet sind.

    Was sollte man über Dreiecke wissen?

    • Der Flächeninhalt lässt sich berechnen als die Hälfte des Produktes einer beliebigen Seite und der zugehörigen Höhe.
    • Der Umfang ist die Summe der drei Seiten.
    • Die Summe der drei Innenwinkel beträgt $180^\circ$.
    Das rote Dreieck oben links hat einen rechten Winkel. Dieser ist mit einem Punkt gekennzeichnet. Die Summe der beiden übrigen Winkel beträgt dann $90^\circ$. Ein solches Dreieck heißt rechtwinkliges Dreieck.

    Das orange Dreieck hat zwei gleich lange Seiten. Dies ist ein gleichschenkliges Dreieck. Übrigens sind die beiden den gleich langen Seiten gegenüberliegenden Winkel ebenfalls gleich groß. Es gibt rechtwinklige gleichschenklige Dreiecke.

    In dem grünen Dreieck sind alle Seiten gleich lang. Dies ist ein gleichseitiges Dreieck. Da alle Seiten gleich lang sind, sind auch alle Winkel gleich groß. Da die Summe aller Innenwinkel immer $180^\circ$ beträgt, ist jeder Winkel also $60^\circ$ groß.

  • Bestimme den jeweiligen Parameter so, dass das Dreieck die angegebene Besonderheit besitzt.

    Tipps

    Alle Lösungen sind ganzzahlig.

    Stelle zunächst die (drei!) Verbindungsvektoren auf.

    Dann musst du Folgendes untersuchen:

    • Sind alle Vektoren gleich lang, dann ist das Dreieck gleichseitig.
    • Sind zwei Vektoren gleich lang, dann ist das Dreieck gleichschenklig.
    • Schließen zwei Vektoren einen rechten Winkel ein, dann ist das Dreieck rechtwinklig.

    Lösung

    In dieser Aufgabe geht es darum, freie Koordinaten von Punkten so zu bestimmen, dass das resultierende Dreieck die vorgegebenen Eigenschaften besitzt.
    In jedem der drei möglichen Fälle, Gleichseitigkeit, Gleichschenkligkeit und Rechtwinkligkeit, können zunächst die Verbindungsvektoren aufgestellt werden:

    Bei dem ersten Dreieck ergeben sich
    $\vec{AB}=\begin{pmatrix} -3 \\ 3\\0 \end{pmatrix}$; $~~~$$\vec{AC}=\begin{pmatrix} -3 \\ 0\\c \end{pmatrix}$; $~~~$$\vec{BC}=\begin{pmatrix} 0 \\ -3\\c \end{pmatrix}$

    Die Länge des Vektors $\vec{AB}$ beträgt $\sqrt{18}$. Damit das resultierende Dreieck gleichseitig ist, muss auch die Länge der beiden anderen Vektoren $\sqrt{18}$ sein. Dies führt zu $\sqrt{9+c^2}=\sqrt{18}$. Wenn man diese Gleichung auf beiden Seiten quadriert, gelangt man zu $9+c^2=18$. Subtraktion von $9$ führt zu $c^2=9$. Nun kann die Wurzel gezogen werden. Das gesuchte $c$ ist entweder $3$ oder $-3$.

    Die Verbindungsvektoren bei dem zweiten Dreieck sind
    $\vec{AB}=\begin{pmatrix} 0 \\ 2\\0 \end{pmatrix}$; $~~~$$\vec{AC}=\begin{pmatrix} 4 \\ b-2\\0 \end{pmatrix}$; $~~~$$\vec{BC}=\begin{pmatrix} 4 \\ b-4\\0 \end{pmatrix}$

    Dieses Dreieck soll rechtwinklig sein. Dies führt zu den folgenden Gleichungen:

    • $2(b-2)=0$, was äquivalent ist zu $b=2$.
    • $2(b+4)=0$. Dies ist äquivalent zu $b=4$.
    • $16+(b-2)(b-4)=0$. Dies führt zu der quadratischen Gleichung $b^2-6b+24=0$, welche keine Lösung hat.
    Zu guter Letzt sind die Verbindungsvektoren des letzten Dreiecks gegeben durch
    $\vec{AB}=\begin{pmatrix} 2 \\ 1\\-2 \end{pmatrix}$; $~~~$$\vec{AC}=\begin{pmatrix} 1 \\ -2\\c-3 \end{pmatrix}$

    Dieses Dreieck soll gleichschenklig sein, wobei die beiden gleich langen Schenkel den Punkt $A$ enthalten. Deshalb ist $\vec{BC}$ nicht von Interesse.

    Es ist $|\vec{AB}|=\sqrt{4+1+4}=\sqrt{9}=3$. Deshalb muss $c$ so gewählt werden, dass auch der Vektoren $\vec{AC}$ die Länge $3$ besitzt:

    $|\vec{AC}|=\sqrt{1+4+(c-3)^2}=\sqrt{5+(c-3)^2}$. Durch Quadrieren sowie Subtraktion von $5$ gelangt man zu $(c-3)^2=4$, also, nun wird die Wurzel gezogen, $c-3=\pm2$. Dies führt zu $c=2+3=5$ oder $c=-2+3=1$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.315

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.916

Lernvideos

37.124

Übungen

34.340

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden