Farbstoffmoleküle – Was macht Moleküle farbig?

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Farben und Farbstoffe

Farben – Einführung (Expertenwissen)

Farbstoffmoleküle – Was macht Moleküle farbig?

Farbstoffe – Einführung

Farbstoffe – Einführung (Expertenwissen)

Aufbau eines Farbstoffs

Aufbau und Wirkungsweise eines Farbstoffes

Azokupplung

Zusammenhang zwischen Farbe und Struktur

Zusammenhang zwischen Farbe und Struktur (Expertenwissen)

Farbstoffe und Färbemittel – Einführung

Färben mit Farbstoffen

Färben mit Farbstoffen (Expertenwissen)

Färben von Naturfasern und Kunstfasern

Wechselwirkungen zwischen Farbstoff- und Fasermolekül

Phenolphthalein – Funktion eines Indikators
Farbstoffmoleküle – Was macht Moleküle farbig? Übung
-
Entscheide, welche der folgenden Verbindungen farbig ist.
TippsFarbiges Licht wird durch die $\pi$-Elektronen aus konjugierten Doppelbindungen absorbiert.
LösungUm Licht im sichtbaren Bereich zu absorbieren, benötigen Verbindungen ein möglichst großes System aus delokalisierten $\pi$-Elektronen. Je ausgedehnter das System ist, desto geringer ist die benötigte Anregungsenergie. Um im sichtbaren Licht zu absorbieren, werden mehr als neun konjugierte Doppelbindungen benötigt. Lycopin ist der rote Farbstoff der Tomate und besitzt sogar dreizehn. Lycopin ist also farbig. Enthält eine Verbindung auxochrome Gruppen, reicht auch schon ein kleineres konjugiertes Doppelbindungssystem. Die hier vorgegebene Verbindung gehört zu den Cyaninen und ist trotz der drei konjugierten Doppelbindungen farbig.
Die anderen beiden Verbindungen sind Hexen und Hexanol. Beide Verbindungen sind farblos, da sie entweder keine $\pi$-Elektronen besitzen oder ihre $\pi$-Elektronen nicht durch sichtbares Licht angeregt werden können.
-
Gib die Komplementärfarbe zu folgenden Farben an.
TippsSieh dir den Farbkreis an.
LösungUm zu verstehen, welche Farbe ein Molekül hat, ist es wichtig, dass du dich mit dem Farbkreis und den Komplementärfarben auskennst. Wird ein Bereich des farbigen Lichtes von einem Molekül absorbiert, werden nur noch die anderen Bereiche reflektiert und es ergibt sich somit für das menschliche Auge die Komplementärfarbe zur Farbe des absorbierten Lichtes. Im Farbkreis siehst du gut die Komplementärfarben, also die Farben, die sich gegenüberliegen. Orange und Blau liegen sich zum Beispiel gegenüber. Je mehr Gelbanteile im Orange sind, desto mehr Rotanteile sind im Blau, es wird also violetter.
-
Erkläre, warum Tomaten rot und Karotten orange sind.
TippsVerbindungen erscheinen in der Komplementärfarbe zum absorbierten Licht.
Kurzwelliges Licht ist energiereicher als langwellliges Licht.
LösungVerbindungen erscheinen in der Komplementärfarbe zum Licht, welches durch sie absorbiert wird. Ist Carotin also orange, muss blaues Licht absorbiert werden und ist Lycopin rot, dann wird grünes Licht absorbiert. Das blaue Licht ist kurzwelliger und damit energiereicher als das grüne Licht. Zur Anregung der $\pi$-Elektronen in Carotin wird also mehr Energie benötigt als zur Anregung in Lycopin. Erklären lässt sich das durch das ausgedehntere Doppelbindungssystem im Lycopin, bestehend aus dreizehn konjugierten Doppelbindungen, während im Carotin nur elf vorliegen. Je ausgedehnter das System, desto geringer ist die Energie, die zur Anregung nötig ist.
-
Werte folgendes Absorptionsspektrum aus.
TippsSpektrum des sichtbaren Lichts
Die Verbindung muss die Komplementärfarbe zur Farbe des absorbierten Lichts haben.
LösungIn dem Spektrum siehst du, dass Licht im Wellenlängenbereich des sichtbaren Lichts absorbiert wird. Besonders groß ist die Absorption im Bereich von 400 - 500 nm. In diesem Bereich ist das Licht blau. Absorbiert nun also eine Verbindung blaues Licht, erscheint sie in der Komplementärfarbe, also orange. Von den angegebenen Verbindungen ist nur Carotin orange, das Spektrum muss also zu Carotin gehören.
-
Nenne den Wellenlängenbereich des sichtbaren Lichtes.
TippsDie Wellenlänge des Lichts im sichtbaren Bereich wird in Nanometern gemessen.
LösungDer Bereich des sichtbaren Lichtes liegt zwischen dem energiereicheren ultravioletten Bereich und dem energieärmeren infraroten Bereich. Sichtbares Licht liegt damit in einem Wellenlängenbereich von 380 -780 nm.
-
Entscheide, welche der funktionellen Gruppen auxochrom und welche antiauxochrom ist.
TippsAuxochrome Gruppen sind Elektronendonatoren, antiauxchrome Gruppen sind Elektronenakzeptoren.
LösungBefinden sich an einem System aus konjugierten Doppelbindungen eine auxochrome und eine antiauxochrome Gruppe, werden die $\pi$-Elektronen noch besser über das gesamte Molekül delokalisiert. Beispiel dafür sind die Cyanine. Auxochrome Gruppen sind Gruppen, die Elektronen ins System schieben und antiauxochrome Gruppen nehmen die Elektronen auf. Auxochrome Gruppen sind damit Elektronendonatoren. In unseren Beispielen sind das die Hydroxygruppe und die Aminogruppe. Die Hydroxygruppe schiebt dabei ein freies Elektronenpaar am Sauerstoff ins System und die Aminogruppe das freie Elektronenpaar des Stickstoffs. Akzeptorgruppen sind dagegen die Carbonylgruppe, die Nitrogruppe und die Ammoniumgruppe.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Stärke und Cellulose Chemie
- Süßwasser und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindung
- Wasserhärte
- Peptidbindung
- Fermentation