Ortsfaktor
Erfahre, wie der Ortsfaktor die Gewichtskraft beeinflusst und warum Astronauten auf dem Mond leichter sind. Von der Definition bis zur Anwendung – entdecke, wie du den Ortsfaktor berechnest und warum er auf verschiedenen Himmelskörpern variiert. Interessiert? Tauche tiefer ein und erfahre Antworten auf häufig gestellte Fragen!
- Ortsfaktor – einfach erklärt
- Ortsfaktor – Gewichtskraft und Ortsfaktor Definition
- Zusammenhang von Gewichtskraft und Masse
- Wieso heißt der Ortsfaktor Ortsfaktor?
- Wie kann man den Ortsfaktor ermitteln?
- Ortsfaktor – andere Himmelskörper
- Ausblick – das lernst du nach Ortsfaktor
- Zusammenfassung – Ortsfaktor
- Häufig gestellte Fragen zum Thema Ortsfaktor
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Ortsfaktor Übung
-
Nenne Unterschiede zwischen Gewichtskraft und Masse
TippsBei dem Verhältnis von Masse und Gewichtskraft bezieht sich das immer auf einen jeweils festen Ort.
LösungGewichtskraft und Masse sind zwei verschiedene Begriffe für verschiedene Größen. Obwohl man oft das Gefühl hat, es wäre das Gleiche.
Die Masse eines Körpers ist allgemein konstant. Das Gewicht ist dann nur das Maß, welches wir wahrnehmen. Das Gewicht ist also der umgangssprachliche Begriff für die Gewichtskraft.
Die Gewichtskraft ist dann die Kraft, die die Masse ausübt, wenn sie von einer Gravitation angezogen wird. Je nach Gravitation variiert die Gewichtskraft.
-
Nenne Beispiele mit denen man Masse oder Gewichtskraft messen kann.
TippsDas Fadenpendel wird nicht ausgelenkt und hängt gerade herunter.
Masse und Gewichtskraft kann man mit fast allem messen, was eine Art Fall beinhaltet. Eben allem, worauf das Gewicht von etwas Einfluss hat.
LösungWie messen wir diese Größen überhaupt?
Klingt fast zu leicht, aber eben weil sie sich auf alles auswirkt, gibt es auch viele Möglichkeiten sie zu bestimmen.
Hier ist das Fadenpendel das Einzige, mit dem sich die Masse nicht direkt bestimmen lässt, es sei denn, man würde es auslenken.
Dann wäre es wie die Zeitmessung des Fallversuchs: Kennt man den Gewichtsfaktor und die Fallgeschwindigkeit, kommt man auch auf dessen Masse.
Bei der Feder kann man das Gewicht anhand der Ausdehnung der Feder bestimmen. Die Waage funktioniert ähnlich.
-
Bestimme den Ortsfaktor eines unerforschten Planeten.
TippsDer Ortsfaktor ist das Verhältnis aus Gewichtskraft und Masse.
LösungDer Ortsfaktor ist das, was im Allgemeinen als Gravitationskonstante oder Gewichtskonstante bekannt ist. In Mitteleuropa sind das $9,81~\dfrac{\text{m}}{\text{s}^2}$.
Auf diesem unerforschten Planeten ist sie allerdings anders:
$\dfrac{F_G}{m}=\dfrac{17,55~\text{N}}{1,5~\text{kg}}=11,7~\dfrac{\text{m}}{\text{s}^2}$
Die Einheit ergibt sich daraus, dass $\text{N}=\dfrac{\text{kg m}}{\text{s}^2}$.
Nun könnten wir mit $F_G=m\cdot g\cdot h$ die Kraft eines fallenden Objekts auf diesem Planeten bestimmen.
-
Bestimme die Masse m anhand der Gewichtskraft.
TippsStelle die Gleichung für den Ortsfaktor um.
LösungZum Ausrechnen der Masse stellen wir einfach die Gleichung des Ortsfaktors nach $m$ um:
$\dfrac{F_G}{m}=g$
$m=\dfrac{F_G}{g}=\dfrac{12~\text{N}}{9,8~\dfrac{\text{m}}{\text{s}^2}}=1,2~\text{kg}$
-
Nenne Beispiele für die Nutzung der Gewichtskraft.
TippsÜberlege, in welche Richtung eine Masse fallen würde und in welche Richtung sich die Objekte bewegen.
LösungDie Gewichtskraft wird immer dann benötigt, wenn die Masse eines Objekts benutzt werden soll.
Bei Uhr und Kompass ist dies nicht der Fall. Der Fahrstuhl funktioniert allerdings mit Gegengewichten, also dessen Masse.
-
Berechne die Energie einer fallenden Kugel.
TippsStelle zunächst die Gleichung für den Ortsfaktor um, und überlege dann, wie du die Fallhöhe mit betrachtest. Die Einheit des Ergebnisses kennst du ja schon.
LösungDie Kraft eines fallenden Objekts ist dir vielleicht schon bekannt, aber das ist ja nur Masse mal Beschleunigung. Welche Energie das Objekt nun am Ende des Falls hat, ist aber noch von der Fallhöhe abhängig.
Daraus ergibt sich $E_G=m\cdot g\cdot h=4~\text{kg}\cdot 9,81~\dfrac{\text{m}}{\text{s}^2}\cdot 150~\text{m}=5886~\text{J}$
9.026
sofaheld-Level
6.601
vorgefertigte
Vokabeln
8.048
Lernvideos
37.299
Übungen
33.627
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Wie entsteht Ebbe und Flut?
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'Sches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt