Kohärenz
Erfahre, wie Kohärenz bei Lichtwellen eine Rolle spielt, besonders im Doppelspaltversuch mit unterschiedlichen Lichtquellen. Verstehe den Unterschied zwischen kohärentem und inkohärentem Licht sowie die Bedeutung der räumlichen und zeitlichen Kohärenz. Interessiert? Dies und vieles mehr findest du im folgenden Text!
- Kohärenz in der Physik – Doppelspaltversuch (Aufbau)
- Kohärentes Licht beim Doppelspaltversuch (Laser)
- Inkohärentes Licht beim Doppelspaltversuch (Glühlampe)
- Kohärenz in der Physik – Definition
- Kohärenz in der Physik – anschaulich erklärt
- Kohärenz in der Physik – Deutung des Doppelspaltversuchs
- Ausblick – das lernst du nach Kohärenz
- Zusammenfassung der Kohärenz in der Physik
- Häufig gestellte Fragen zum Thema Kohärenz in der Physik

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Kohärenz Übung
-
Gib an, wann Wellen kohärent sind.
TippsDie Phasen kohärenter Wellen gehorchen einer festen voraussagbaren Beziehung.
LösungWellen sind kohärent, wenn sie mit gleichen Phasen schwingen. Das heißt, sie zeigen keine Phasenverschiebung zueinander. Mit anderen Worten: Ihre Phasen gehorchen einer festen voraussagbaren Beziehung. Wegen dieser Eigenschaft erzeugen kohärente Wellen nach einem Doppelspalt Interferenzbilder.
-
Bestimme die inkohärenten Wellen.
TippsWelche Wellen zeigen Phasenverschiebung?
LösungWellen sind inkohärent (das erste, das dritte und das fünfte Bild), wenn sie in unterschiedlichen Phasen schwingen. Das heißt, sie zeigen eine Phasenverschiebung zueinander. Mit anderen Worten: Ihre Phasen gehorchen keiner festen voraussagbaren Beziehung. Aus diesem Grund erzeugen inkohärente Wellen nach einem Doppelspalt keine Interferenzbilder.
-
Ordne die Ereignisse, die das Verhalten des Laserlichts an einem Doppelspalt beschreiben.
TippsWie wird das Laserlicht ausgestrahlt?
Wie verhalten sich die emittierten Wellen?
Was passiert nach der Spaltung?
Das sichtbare Ergebnis hinter dem Doppelspalt ist…
LösungBei einem Laser werden Atome stimuliert, in Phase zu schwingen. Die Atome emittieren kohärentes Licht, dessen Wellen sich mit gleichen Phasen ausbreiten. Im Laser befinden sich die Lichtquelle und zwei Spiegel. Einer der Spiegel ist zu 100% undurchlässig und der andere nur zu 99,3%. Innerhalb dieses Raumes wird das Licht stetig hin und her reflektiert, bis dieses den Laser verlässt. Dieser Vorgang wird auch als „optisches Pumpen" bezeichnet. Nach diesem Vorgang verlässt kohärentes Licht den Laser. Jeder Punkt auf den kohärenten Wellen schwingt nun genau in der gleichen Phase. Trifft das Licht auf den Doppelspalt, entsteht an beiden Spalten jeweils eine Elementarwelle, die zueinander phasengleich sind. Durch die Überlagerung der phasengleichen Elementarwellen entsteht auf dem Schirm ein eindeutiges Interferenzmuster mit stark ausgeprägten Maximas und Minimas.
-
Ordne die Ereignisse, die das Verhalten vom Licht einer Glühlampe am Doppelspalt beschreiben.
TippsWie wird das Glühlampenlicht ausgestrahlt?
Wie verhalten sich die emittierten Wellen?
Was passiert nach der Spaltung?
Das sichtbare Ergebnis der Doppelspaltung inkohärenten Lichtes ist...
LösungSo kann man die Ereignisse beschreiben:
- Bei einer Glühlampe wird meistens ein Heizdraht angeschaltet.
- Der Heizdraht strahlt spontan weißes Licht aus, dessen Wellenlängen über das gesamte Spektrum verteilt sind.
- Die gestrahlten inkohärenten Photonen, die aus verschiedenen Richtungen stammen und verschiedene Wellenlängen (auch verschiedene Phasen) besitzen, treffen sich an dem Doppelspalt.
- Die zwei Elementarwellen sind phasenungleich und erzeugen Interferenzmuster, die sich auf dem Schirm überlagern.
- Das überlagerte Interferenzmuster bildet einen undeutlichen Fleck.
-
Bestimme die Quellen kohärenter Wellen.
TippsWelche Quellen emittieren Wellen mit unterschiedlichen Eigenschaften wie Phase, Frequenz und Wellenlänge?
LösungEin Funksender emittiert das Nachrichtensignal über eine Antenne. Die Nachrichtensignale, die sogenannten elektromagnetischen Wellen, haben ihre Amplitude und ihre Frequenz moduliert und werden mit gleichen Phasen abgestrahlt. Das bedeutet, dass die mit gleichen Phasen abgestrahlten Wellen kohärente Wellen sind. Ein Funksender ist eine Quelle kohärenter Wellen.
Ein Mikrowellenherd ist so aufgebaut, dass er nur Mikrowellen mit einer bestimmten Frequenz abstrahlen kann. Da der Mikrowellenherd immer Mikrowellen mit gleichen Frequenzen und gleichen Phasen emittiert, sprechen wir über kohärente Wellen. Ein Mikrowellenherd ist eine Quelle kohärenter Wellen.
Ein Laser emittiert monochromes Licht, das heißt Wellen mit gleichen Amplituden, gleichen Frequenzen und gleichen Phasen. Da sich diese Welleneigenschaften während des Laserbetriebs nicht verändern, strahlt der Laser kohärente Wellen aus. Ein Laser ist also eine Quelle kohärenter Wellen.
Die Glühlampe, die Kerze und der Scheinwerfer strahlen Lichtwellen aus, deren Amplituden und Frequenzen unterschiedlich von Welle zu Welle sind. Da die Lichtemission spontan ist, besitzen die Wellen keine Beziehung zueinander. Das bedeutet, diese Wellen sind inkohärente Wellen. Eine Glühlampe, eine Kerze und ein Scheinwerfer sind Quellen inkohärenter Wellen.
-
Bestimme die Kohärenzzeit und den Fall, in dem kein Interferenzmuster erzeugt wird.
TippsBerechne die Kohärenzzeit mithilfe der gegebenen Formel.
Was passiert mit dem Interferenzmuster von gestörten Wellen, die keine Phasenbeziehung mehr zueinander haben?
LösungBetrachten wir die gegebene Gleichung der Kohärenzlänge $l_k=c \cdot t_k$ als eine Funktion der Kohärenzzeit multipliziert mit der Konstante $c=\pu{3*10^8 m//s}$, also der Lichtgeschwindigkeit. Die gesuchte Dauer der ungestörten Laserstrahlung, die sogenannte Kohärenzzeit, bekommen wir durch die Umformung der gegebenen Gleichung: $t_k=\frac{l_k}{c}$.
In unserer Aufgabe ist die Kohärenzlänge, die maximale Länge der ungestört ausgesendeten Wellen, mit $\pu{3,0 km}$ angegeben. Da wir die Kohärenzlänge und die Lichtgeschwindigkeit kennen, können wir die Kohärenzzeit berechnen:
<p>$t_k=\frac{l_k}{c} =\frac{\pu{3,0 * 10^3 m}}{\pu{3,0 * 10^8 m//s}} = \pu{10^{-5} s}$</p>
Dieses Ergebnis bedeutet, dass der Laser am Anfang des Betriebes während der ersten $\pu{10^{-5} s}$ ungestörte Wellen ausstrahlt bis zu einer maximaler Kohärenzlänge von $\pu{3,0 km}$. Bis dahin kann man Interferenzmuster beobachten. Dahinter strahlt der Laser unregelmäßig, d. h. die Wellen haben keine feste Phasenbeziehung mehr zueinander. Daher ist ab diesem Zeitpunkt kein Interferenzmuster mehr zu beobachten.
9.015
sofaheld-Level
6.601
vorgefertigte
Vokabeln
8.046
Lernvideos
37.293
Übungen
33.621
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Wie entsteht Ebbe und Flut?
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'Sches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt