Die Auftriebskraft
Tauche ein in die Welt der Physik und entdecke das Geheimnis, wie riesige Schiffe schwimmen können: die Auftriebskraft! Verstehe, wie das archimedische Prinzip die Wissenschaft hinter schwimmenden Objekten erklärt, und lerne, die Auftriebskraft mit einer klaren Formel zu berechnen. Bist du bereit, mehr über diese faszinierende Kraft zu erfahren? Dann lies weiter und teste dein Wissen mit unseren Übungsaufgaben!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Die Auftriebskraft Übung
-
Erläutere, was die Auftriebskraft ist.
TippsDiese Kräfte wirken, wenn der Körper im Wasser schwebt.
Diese Kräfte wirken, wenn der Körper im Wasser sinkt.
Diese Kräfte wirken, wenn der Körper im Wasser aufsteigt.
LösungAuf einen untergetauchten Körper wirkt eine Kraft, die seiner Gewichtskraft $F_G$ entgegenwirkt. Diese Kraft heißt Auftriebskraft $F_A$. Wenn sie kleiner ist als die Gewichtskraft, dann sinkt der Körper. Ist sie genauso groß, schwebt der Körper im Wasser. Wenn die Auftriebskraft größer ist, dann steigt der Körper nach oben und schwimmt. Die Ursache für den Auftrieb ist der Druck des Wassers: der sogenannte hydrostatische Druck. Er wird verursacht durch das Gewicht des Wassers.
-
Benenne, was Archimedes herausgefunden hat.
TippsWenn ein Körper (zum Beispiel ein Objekt oder ein Schiff) in eine Flüssigkeit (zum Beispiel Wasser) eintaucht, dann verdrängt er eine bestimmte Menge der Flüssigkeit, die seinem Volumen entspricht.
Der Satz von Archimedes erklärt unter anderem, warum schwere Gegenstände im Wasser schwimmen können: Solange die Gewichtskraft des Gegenstands kleiner ist als die Gewichtskraft der verdrängten Flüssigkeit, können diese schwimmen.
LösungDer Satz von Archimedes beschreibt das physikalische Phänomen des Auftriebs, das in einer Flüssigkeit auf einen Körper wirkt. Der Satz besagt, dass die Auftriebskraft, die auf einen in einer Flüssigkeit eingetauchten Körper wirkt, genau der Gewichtskraft der verdrängten Flüssigkeit entspricht.
Das bedeutet, wenn ein Körper (zum Beispiel ein Objekt oder ein Schiff) in eine Flüssigkeit (zum Beispiel Wasser) eintaucht, dann verdrängt er eine bestimmte Menge der Flüssigkeit, die seinem Volumen entspricht. Die verdrängte Flüssigkeit wird nach unten gedrückt und erzeugt dabei eine Auftriebskraft, die in entgegengesetzter Richtung zur Gewichtskraft wirkt. Diese Auftriebskraft ist genauso groß wie das Gewicht der verdrängten Flüssigkeit.
Der Satz von Archimedes erklärt unter anderem, warum schwere Gegenstände im Wasser schwimmen können: Solange die Gewichtskraft des Gegenstands kleiner ist als die Gewichtskraft der verdrängten Flüssigkeit, können diese schwimmen.
Dieses Prinzip ist auch der Grund, warum Schiffe und Boote schwimmen können: Ihr Gewicht wird durch den Auftrieb der verdrängten Flüssigkeit ausgeglichen. Somit gehen sie nicht komplett unter.- Die Auftriebskraft in einer Flüssigkeit entspricht der Gewichtskraft der verdrängten Flüssigkeit.
- Die Auftriebskraft in einer Flüssigkeit entspricht nicht der Gewichtskraft der verdrängten Flüssigkeit.
- Die Auftriebskraft in einer Flüssigkeit entspricht der Anziehungskraft der verdrängten Flüssigkeit.
- Die Auftriebskraft in einer Flüssigkeit entspricht dem Druck der verdrängten Flüssigkeit.
-
Benenne die richtige Bedeutung der Formelzeichen.
TippsDie tiefgestellten Buchstaben geben einen Hinweis auf die Bedeutung des Formelbuchstabens.
LösungDie richtigen Zuordnungen lauten:
- $F_G$ $\rightarrow$ Gewichtskraft
- $\varrho _w$ $\rightarrow$ Dichte von Wasser
- $A$ $\rightarrow$ Fläche des Körpers im Wasser
- $h$ $\rightarrow$ Tiefe des Körpers unter der Wasseroberfläche
- $p$ $\rightarrow$ Druck
- $V$ $\rightarrow$ Volumen
-
Leite die Formel zur Berechnung der Auftriebskraft her.
TippsDrücke zunächst die Kräftedifferenz von $F_2$ und $F_1$ aus.
Klammere anschließend $A$ aus.
Setze nun die Ausdrücke für den Druck ein. Allgemein gilt:
$p=\rho _w\cdot g\cdot h$
Jetzt klammerst du $A$, $\rho _w$ und $g$ aus.
Der Höhe des Quaders entspricht $h_2 - h_1$. Damit kannst du ${V_K = A\cdot(h_2 - h_1)}$ ausdrücken.
LösungDie Kräftedifferenz haben wir ausgeschrieben als:
$F_A=p_2\cdot A - p_1\cdot A$
Dann klammern wir A aus:
1. $F_A=A(p_2-p_1)$
Nun setzen wir die Ausdrücke für den Druck ein:
2. $F_A=A(\rho _w\cdot g\cdot h_2 - \rho _w\cdot g\cdot h_1)$
Jetzt klammern wir $A$, $\rho _w$ und $g$ aus:
3. $F_A=A\cdot\rho _w\cdot g\cdot (h_2 - h_1)$
Der Höhe des Quaders entspricht $h_2 - h_1$. Wir wissen dann, dass $V_K=A\cdot(h_2 - h_1)$ sein Volumen $V_K$ darstellt. Das können wir in unserer Herleitung finden und ersetzen es:
4. $F_A=V_K\cdot\rho _w\cdot g$
Das Produkt aus $\rho _w$ und $V_K$, also der Dichte des Wassers und dem Volumen des Körpers, entspricht der Masse einer Menge Wasser mit demselben Volumen wie der Körper. Multiplizieren wir das Ganze mit $g$, erhalten wir die Gewichtskraft des verdrängten Wassers.
-
Beschreibe, wie sich die Auftriebskraft $F_A$ zur Gewichtskraft $F_G$ verhält.
Tipps$F_A < F_G$ bedeutet, dass die Auftriebskraft kleiner ist als die Gewichtskraft.
$F_A > F_G$ bedeutet, dass die Auftriebskraft größer ist als die Gewichtskraft.
$F_A = F_G$ bedeutet, dass Auftriebskraft und Gewichtskraft gleich groß sind.
Die Auftriebskraft wirkt nach oben und die Gewichtskraft wirkt nach unten.
LösungAuf einen untergetauchten Körper wirkt eine Kraft, die seiner Gewichtskraft $F_G$ entgegenwirkt. Diese Kraft heißt Auftriebskraft $F_A$.
- $F_A < F_G$ bedeutet, dass die Auftriebskraft kleiner ist als die Gewichtskraft. Wenn das der Fall ist, dann sinkt der Körper.
- $F_A > F_G$ bedeutet, dass die Auftriebskraft größer ist als die Gewichtskraft. Wenn das der Fall ist, dann steigt der Körper nach oben und schwimmt.
- $F_A = F_G$ bedeutet, dass Auftriebskraft und Gewichtskraft gleich groß sind. Wenn das der Fall ist, dann schwebt der Körper im Wasser.
Die Ursache für den Auftrieb ist der Druck des Wassers: der sogenannte hydrostatische Druck. Er wird verursacht durch das Gewicht des Wassers.
-
Berechne die Auftriebskraft.
TippsDie Formel für die Auftriebskraft lautet:
$F_A=V_K\cdot\rho _w\cdot g$
Folgendes haben wir in der Aufgabe gegeben:
- Dichte des Materials: $\varrho_M=2{,}5~\dfrac{\text{g}}{\text{cm}^3}$
- Dichte des Wassers: $\varrho_W=1~\dfrac{\text{g}}{\text{cm}^3}=1\,000~\dfrac{\text{kg}}{\text{m}^3}$
- Erdbeschleunigung: $g=9,81~\dfrac{\text{m}}{\text{s}^2}$
Um das Volumen $V_K$ zu berechnen, hilft uns diese Angabe:
„Dazu fertigen sie einen Würfel mit einer Seitenlänge von $10~\text{cm}$, also einen Würfel mit der Seitenlänge $a=\pu{0,1 m}$, aus dem unbekannten Material an.“
Es folgt für das Volumen $V_K$:
$V_K=0,1~\text{m}\cdot 0,1~\text{m} \cdot 0,1~\text{m}$
$V_K=0,001~\text{m}^3$
Jetzt können wir alles in die Formel einsetzen und ausrechnen:
$F_A=V_K\cdot\rho _w\cdot g$
$F_A=0,001~\text{m}^3\cdot 1\,000~\dfrac{\text{kg}}{\text{m}^3}\cdot 9,81~\dfrac{\text{m}}{\text{s}^2}$
LösungDie Formel für die Auftriebskraft lautet:
$F_A=V_K\cdot\rho _w\cdot g$
Folgendes haben wir in der Aufgabe gegeben:
- Dichte des Materials: $\varrho_M = 2{,}5~\dfrac{\text{g}}{\text{cm}^3}$
- Dichte des Wassers: $\varrho_W = 1~\dfrac{\text{g}}{\text{cm}^3}=1\,000~\dfrac{\text{kg}}{\text{m}^3}$
- Erdbeschleunigung: $g=9,81~\dfrac{\text{m}}{\text{s}^2}$
Um das Volumen $V_K$ zu berechnen, hilft uns diese Angabe:
„Dazu fertigen sie einen Würfel mit einer Seitenlänge von $10~\text{cm}$, also einen Würfel mit der Seitenlänge $a=\pu{0,1 m}$, aus dem unbekannten Material an.“
Es folgt für das Volumen $V_K$:
$V_K=0,1~\text{m}\cdot 0,1~\text{m}\cdot 0,1~\text{m}$
$V_K=0,001~\text{m}^3$
Nun können wir alles in die Formel einsetzen und ausrechnen:
$F_A=V_K\cdot\rho _w\cdot g$
$F_A=0,001~\text{m}^3\cdot 1\,000~\dfrac{\text{kg}}{\text{m}^3} \cdot 9,81~\dfrac{\text{m}}{\text{s}^2}$
$F_A=9,81~\dfrac{\text{kg} \cdot \text{m}}{\text{s}^2}=\pu{9,81 N}$
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.225
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie