Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Die Auftriebskraft

Tauche ein in die Welt der Physik und entdecke das Geheimnis, wie riesige Schiffe schwimmen können: die Auftriebskraft! Verstehe, wie das archimedische Prinzip die Wissenschaft hinter schwimmenden Objekten erklärt, und lerne, die Auftriebskraft mit einer klaren Formel zu berechnen. Bist du bereit, mehr über diese faszinierende Kraft zu erfahren? Dann lies weiter und teste dein Wissen mit unseren Übungsaufgaben!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Die Auftriebskraft

Wie lautet das archimedische Prinzip?

1/1
Bewertung

Ø 3.2 / 82 Bewertungen
Die Autor*innen
Avatar
Team Digital
Die Auftriebskraft
lernst du in der 7. Klasse - 8. Klasse

Die Auftriebskraft Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Die Auftriebskraft kannst du es wiederholen und üben.
  • Tipps

    Diese Kräfte wirken, wenn der Körper im Wasser schwebt.

    Diese Kräfte wirken, wenn der Körper im Wasser sinkt.

    Diese Kräfte wirken, wenn der Körper im Wasser aufsteigt.

    Lösung

    Auf einen untergetauchten Körper wirkt eine Kraft, die seiner Gewichtskraft $F_G$ entgegenwirkt. Diese Kraft heißt Auftriebskraft $F_A$. Wenn sie kleiner ist als die Gewichtskraft, dann sinkt der Körper. Ist sie genauso groß, schwebt der Körper im Wasser. Wenn die Auftriebskraft größer ist, dann steigt der Körper nach oben und schwimmt. Die Ursache für den Auftrieb ist der Druck des Wassers: der sogenannte hydrostatische Druck. Er wird verursacht durch das Gewicht des Wassers.

  • Tipps

    Wenn ein Körper (zum Beispiel ein Objekt oder ein Schiff) in eine Flüssigkeit (zum Beispiel Wasser) eintaucht, dann verdrängt er eine bestimmte Menge der Flüssigkeit, die seinem Volumen entspricht.

    Der Satz von Archimedes erklärt unter anderem, warum schwere Gegenstände im Wasser schwimmen können: Solange die Gewichtskraft des Gegenstands kleiner ist als die Gewichtskraft der verdrängten Flüssigkeit, können diese schwimmen.

    Lösung

    Der Satz von Archimedes beschreibt das physikalische Phänomen des Auftriebs, das in einer Flüssigkeit auf einen Körper wirkt. Der Satz besagt, dass die Auftriebskraft, die auf einen in einer Flüssigkeit eingetauchten Körper wirkt, genau der Gewichtskraft der verdrängten Flüssigkeit entspricht.

    Das bedeutet, wenn ein Körper (zum Beispiel ein Objekt oder ein Schiff) in eine Flüssigkeit (zum Beispiel Wasser) eintaucht, dann verdrängt er eine bestimmte Menge der Flüssigkeit, die seinem Volumen entspricht. Die verdrängte Flüssigkeit wird nach unten gedrückt und erzeugt dabei eine Auftriebskraft, die in entgegengesetzter Richtung zur Gewichtskraft wirkt. Diese Auftriebskraft ist genauso groß wie das Gewicht der verdrängten Flüssigkeit.
    Der Satz von Archimedes erklärt unter anderem, warum schwere Gegenstände im Wasser schwimmen können: Solange die Gewichtskraft des Gegenstands kleiner ist als die Gewichtskraft der verdrängten Flüssigkeit, können diese schwimmen.
    Dieses Prinzip ist auch der Grund, warum Schiffe und Boote schwimmen können: Ihr Gewicht wird durch den Auftrieb der verdrängten Flüssigkeit ausgeglichen. Somit gehen sie nicht komplett unter.

    • Die Auftriebskraft in einer Flüssigkeit entspricht der Gewichtskraft der verdrängten Flüssigkeit.
    $\Rightarrow$ Diese Antwort ist richtig.

    • Die Auftriebskraft in einer Flüssigkeit entspricht nicht der Gewichtskraft der verdrängten Flüssigkeit.
    $\Rightarrow$ Diese Antwort ist falsch.

    • Die Auftriebskraft in einer Flüssigkeit entspricht der Anziehungskraft der verdrängten Flüssigkeit.
    $\Rightarrow$ Diese Antwort ist falsch.

    • Die Auftriebskraft in einer Flüssigkeit entspricht dem Druck der verdrängten Flüssigkeit.
    $\Rightarrow$ Diese Antwort ist falsch.

  • Tipps

    Die tiefgestellten Buchstaben geben einen Hinweis auf die Bedeutung des Formelbuchstabens.

    Lösung

    Die richtigen Zuordnungen lauten:

    • $F_G$ $\rightarrow$ Gewichtskraft
    • $\varrho _w$ $\rightarrow$ Dichte von Wasser
    • $A$ $\rightarrow$ Fläche des Körpers im Wasser
    • $h$ $\rightarrow$ Tiefe des Körpers unter der Wasseroberfläche
    • $p$ $\rightarrow$ Druck
    • $V$ $\rightarrow$ Volumen
  • Tipps

    Drücke zunächst die Kräftedifferenz von $F_2$ und $F_1$ aus.

    Klammere anschließend $A$ aus.

    Setze nun die Ausdrücke für den Druck ein. Allgemein gilt:

    $p=\rho _w\cdot g\cdot h$

    Jetzt klammerst du $A$, $\rho _w$ und $g$ aus.

    Der Höhe des Quaders entspricht $h_2 - h_1$. Damit kannst du ${V_K = A\cdot(h_2 - h_1)}$ ausdrücken.

    Lösung

    Die Kräftedifferenz haben wir ausgeschrieben als:

    $F_A=p_2\cdot A - p_1\cdot A$

    Dann klammern wir A aus:

    1. $F_A=A(p_2-p_1)$

    Nun setzen wir die Ausdrücke für den Druck ein:

    2. $F_A=A(\rho _w\cdot g\cdot h_2 - \rho _w\cdot g\cdot h_1)$

    Jetzt klammern wir $A$, $\rho _w$ und $g$ aus:

    3. $F_A=A\cdot\rho _w\cdot g\cdot (h_2 - h_1)$

    Der Höhe des Quaders entspricht $h_2 - h_1$. Wir wissen dann, dass $V_K=A\cdot(h_2 - h_1)$ sein Volumen $V_K$ darstellt. Das können wir in unserer Herleitung finden und ersetzen es:

    4. $F_A=V_K\cdot\rho _w\cdot g$

    Das Produkt aus $\rho _w$ und $V_K$, also der Dichte des Wassers und dem Volumen des Körpers, entspricht der Masse einer Menge Wasser mit demselben Volumen wie der Körper. Multiplizieren wir das Ganze mit $g$, erhalten wir die Gewichtskraft des verdrängten Wassers.

  • Tipps

    $F_A < F_G$ bedeutet, dass die Auftriebskraft kleiner ist als die Gewichtskraft.

    $F_A > F_G$ bedeutet, dass die Auftriebskraft größer ist als die Gewichtskraft.

    $F_A = F_G$ bedeutet, dass Auftriebskraft und Gewichtskraft gleich groß sind.

    Die Auftriebskraft wirkt nach oben und die Gewichtskraft wirkt nach unten.

    Lösung

    Auf einen untergetauchten Körper wirkt eine Kraft, die seiner Gewichtskraft $F_G$ entgegenwirkt. Diese Kraft heißt Auftriebskraft $F_A$.

    • $F_A < F_G$ bedeutet, dass die Auftriebskraft kleiner ist als die Gewichtskraft. Wenn das der Fall ist, dann sinkt der Körper.
    $\Rightarrow$ Steine auf dem Meeresgrund

    • $F_A > F_G$ bedeutet, dass die Auftriebskraft größer ist als die Gewichtskraft. Wenn das der Fall ist, dann steigt der Körper nach oben und schwimmt.
    $\Rightarrow$ Entspannen auf dem Toten Meer

    • $F_A = F_G$ bedeutet, dass Auftriebskraft und Gewichtskraft gleich groß sind. Wenn das der Fall ist, dann schwebt der Körper im Wasser.
    $\Rightarrow$ Müll im Wasser

    Die Ursache für den Auftrieb ist der Druck des Wassers: der sogenannte hydrostatische Druck. Er wird verursacht durch das Gewicht des Wassers.

  • Tipps

    Die Formel für die Auftriebskraft lautet:

    $F_A=V_K\cdot\rho _w\cdot g$

    Folgendes haben wir in der Aufgabe gegeben:

    • Dichte des Materials: $\varrho_M=2{,}5~\dfrac{\text{g}}{\text{cm}^3}$
    • Dichte des Wassers: $\varrho_W=1~\dfrac{\text{g}}{\text{cm}^3}=1\,000~\dfrac{\text{kg}}{\text{m}^3}$
    Außerdem gilt:

    • Erdbeschleunigung: $g=9,81~\dfrac{\text{m}}{\text{s}^2}$

    Um das Volumen $V_K$ zu berechnen, hilft uns diese Angabe:

    „Dazu fertigen sie einen Würfel mit einer Seitenlänge von $10~\text{cm}$, also einen Würfel mit der Seitenlänge $a=\pu{0,1 m}$, aus dem unbekannten Material an.“

    Es folgt für das Volumen $V_K$:

    $V_K=0,1~\text{m}\cdot 0,1~\text{m} \cdot 0,1~\text{m}$

    $V_K=0,001~\text{m}^3$

    Jetzt können wir alles in die Formel einsetzen und ausrechnen:

    $F_A=V_K\cdot\rho _w\cdot g$

    $F_A=0,001~\text{m}^3\cdot 1\,000~\dfrac{\text{kg}}{\text{m}^3}\cdot 9,81~\dfrac{\text{m}}{\text{s}^2}$

    Lösung

    Die Formel für die Auftriebskraft lautet:

    $F_A=V_K\cdot\rho _w\cdot g$

    Folgendes haben wir in der Aufgabe gegeben:

    • Dichte des Materials: $\varrho_M = 2{,}5~\dfrac{\text{g}}{\text{cm}^3}$
    • Dichte des Wassers: $\varrho_W = 1~\dfrac{\text{g}}{\text{cm}^3}=1\,000~\dfrac{\text{kg}}{\text{m}^3}$
    Außerdem gilt:

    • Erdbeschleunigung: $g=9,81~\dfrac{\text{m}}{\text{s}^2}$

    Um das Volumen $V_K$ zu berechnen, hilft uns diese Angabe:

    „Dazu fertigen sie einen Würfel mit einer Seitenlänge von $10~\text{cm}$, also einen Würfel mit der Seitenlänge $a=\pu{0,1 m}$, aus dem unbekannten Material an.“

    Es folgt für das Volumen $V_K$:

    $V_K=0,1~\text{m}\cdot 0,1~\text{m}\cdot 0,1~\text{m}$

    $V_K=0,001~\text{m}^3$

    Nun können wir alles in die Formel einsetzen und ausrechnen:

    $F_A=V_K\cdot\rho _w\cdot g$

    $F_A=0,001~\text{m}^3\cdot 1\,000~\dfrac{\text{kg}}{\text{m}^3} \cdot 9,81~\dfrac{\text{m}}{\text{s}^2}$

    $F_A=9,81~\dfrac{\text{kg} \cdot \text{m}}{\text{s}^2}=\pu{9,81 N}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.225

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen