30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Nebelkammer 06:54 min

Textversion des Videos

Transkript Nebelkammer

Hallo und herzlich willkommen zu Physik mit Kalle! Wir wollen uns heute, wieder aus dem Gebiet der Atom- und Kernphysik, die Nebelkammer genauer ansehen. Für dieses Video solltet ihr bereits das Video zur Alpha-, Beta- und Gammastrahlung gesehen haben, da dort das Ionisationsvermögen behandelt wird und wir uns kurz mit der Alpha-, Beta- und Gammastrahlung in der Nebelkammer beschäftigen. Und los gehts! Wir lernen heute, was eine Nebelkammer ist, wie sie funktioniert und was der Unterschied zwischen einer Diffusions- und einer Expansionsnebelkammer ist. Dann mal auf zur ersten Frage: Was ist denn eine Nebelkammer? Eine Nebelkammer ist ein Teilchendetektor zur Untersuchung ionisierender Strahlung. Wenn man das Ganze ein bisschen anschaulicher erklären will, kann man auch sagen, eine Nebelkammer ist ein Gerät, in dem die Bahn eines ionisierenden Teilchens sichtbar gemacht wird. Heutzutage werden Nebelkammern meistens nur noch zu Anschauungszwecken verwendet. Anfang des 20. Jahrhunderts aber, als die verschiedenen Strahlungsarten und Elementarteilchen eingehend untersucht wurden, war sie das Topgerät. Rutherford zum Beispiel sagte einmal, dass die Wilsonsche Nebelkammer das großartigste Instrument ist, das die Wissenschaft je hervorgebracht hat. Mit der Nebelkammer wurde zum Beispiel auch 1932 von Carl David Anderson das Positron entdeckt. Links seht ihr das erste Foto von der Bahn eines Positrons, das jemals aufgenommen wurde. Vier Jahre später bekam er dafür auch den Nobelpreis. So weit, so gut. Mit einer Nebelkammer kann man also die Bahn eines ionisierenden Teilchens sichtbar machen. Aber wie funktioniert sie nun genau? Stellt euch die Nebelkammer am besten wie eine Art Aquarium vor, das mit einem Luft-Alkohol-Gemisch gefüllt ist. Dieses Luft-Alkohol-Gemisch muss übersättigt sein, das heißt, ganz kurz davor kleine Kondensationströpfchen zu bilden. Da genau auf diese Art auch gewöhnlicher Nebel entsteht - in gesättigter Luft bilden sich kleinste Tröpfchen, die die Sichtweite einschränken -, nennt man unser Instrument also die Nebelkammer. Oft wird dazu ein starker Magnet installiert, der in der Nebelkammer ein Magnetfeld erzeugt, sodass geladene Teilchen auf eine Kreisbahn gelenkt werden. So, dann ist unsere Nebelkammer schon fertig gebaut. Jetzt wollen wir mal sehen, was passiert, wenn ionisierende Strahlung in sie eintritt. Wie wir bereits wissen, kann ionisierende Strahlung Elektronen aus Atomen herausschlagen. Unsere Strahlung wird also, entlang ihrer Bahn, Ionen zurücklassen. Da unser Luft-Alkohol-Gemisch übersättigt ist, reichen diese kleinen ionisierten Atome aus, um sogenannte Kondensationskerne zu bilden, das heißt, Zentren, an denen sich kleine Tröpfchen bilden. Da diese kleinen Tröpfchen überall entlang der Bahnen unserer Strahlung entstehen, bilden sich also, genau wie bei einem Flugzeug am Himmel, Kondensationsstreifen. Hier seht ihr zum Beispiel ein Bild aus der Nebelkammer vom deutschen Elektronen-Synchrotron in Hamburg. Wie ihr erkennen könnt, sind die einzelnen Bahnen deutlich sichtbar. Wie erkenne ich jetzt nun aber, was was ist? Dazu müssen wir uns mal ansehen, welche Bahnen welche Sorte von Strahlung genauer hinterlässt: Wie ihr euch vielleicht erinnert, ist Alphastrahlung sehr kurzreichweitig, ionisiert dafür stark und ist sehr schwer. Das heißt, die Streifen, die sie zurücklassen wird, sind äußerst dick, kurz und gerade, da die Alphastrahlen zwar vom Magnetfeld abgelenkt werden, aufgrund ihres Gewichtes aber eine Kreisbahn von mehreren Metern Radius beschreiben. Das heißt, auf die kurze Entfernung, die sie zurücklegen, wirkt ihre Spur gerade. Betastrahlen dagegen sind leichter, haben eine höhere Reichweite und nur mittleres Ionisationsvermögen, weswegen man sie an den dünneren, etwas längeren Streifen erkennen kann, die deutlich kreisförmiger sind und oft auch Knicke aufweisen, da die Betastrahlung sich leicht zerstreuen lässt. Gammastrahlen sind wegen ihres geringen Ionisationsvermögens meistens in Nebelkammern gar nicht nachzuweisen. Wenn man sie dann doch sehen kann, ist es oft, wenn sie über Sekundärprozesse geladene Teilchen auslösen, wie zum Beispiel durch den Photo- oder Comptoneffekt. So weit, so gut. Dann wollen wir uns zum Schluss noch ansehen, welche Arten von Nebelkammern es eigentlich gibt. Man unterscheidet hauptsächlich zwischen den Expansionsnebelkammern und den Diffusionsnebelkammern. Als erstes wollen wir uns mal die Expansionsnebelkammer genauer ansehen:

Die Expansionnebelkammer, oft nach ihrem Erfinder auch die Wilsonsche Nebelkammer genannt, verfolgt ein sehr einfaches Prinzip: Die Kammer wird mit dem Gemisch gefüllt und dann wird ein Kolben herausgezogen, wodurch sich das Volumen des Gases vergrößert und Druck und Temperatur sinken. Dadurch wird das Gas schlagartig übersättigt und für eine kurze Zeit können Spuren von ionisierenden Teilchen nachgewiesen werden. Mit diesem Vorgehen habe ich mir also eine Nebelkammer gebaut, die für ca. 1 Sekunde die Bahn von ionisierenden Strahlen verfolgen kann. Die Expansionsnebelkammer ist also eine relativ billige Variante, ist allerdings aber auch nur für Schnappschüsse gut. Die Diffusionsnebelkammer dagegen ist schon ein wenig komplizierter: In der Diffusionsnebelkammer wird der Boden gekühlt, auf etwa -30°C und 10 bis 15cm darüber befinden sich Heizdrähte, die die Luft um sie herum konstant auf ungefähr 15°C plus halten. Durch dieses Temperaturgefälle entsteht knapp über dem Boden eine Schicht von übersättigtem Gas, in dem sich wieder leicht Kondensationskerne bilden lassen. Oft wird in einer Diffusionsnebelkammer außerdem eine Pumpe installiert, damit ich die Ionen abpumpen kann, um meine Kammer wieder sauber zu machen für neue Versuche. Die Diffusionsnebelkammer ist also eine wesentlich teurere und kompliziertere Variante, allerdings kann ich sie mehrere Stunden laufen lassen und nicht nur eine Sekunde lang. So, dann wollen wir noch mal wiederholen, was wir heute gelernt haben. Die Nebelkammer ist ein Teilchendetektor zur Untersuchung ionisierender Strahlung. In ihr werden die Bahnen ionisierender Teilchen sichtbar gemacht. Dies geschieht, indem in der Kammer ionisierte Atome zu Kondensationskernen werden, wodurch sich entlang der Bahnen der ionisierenden Strahlung kleine Tröpfchen bilden und Kondensationsstreifen entstehen. Die dafür notwendige Übersättigung des Luft-Alkohol-Gemischs wird in der Expansionsnebelkammer durch das Herausziehen eines Kolben verursacht. Dieser Zustand hält dort aber nur eine Sekunde an. In der Diffusionsnebelkammer dagegen wird die Übersättigung durch ein starkes Temperaturgefälle erzeugt, sodass man die Diffusionsnebelkammer mehrere Stunden lang laufen lassen kann. So, das war es schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis bald! Euer Kalle  

1 Kommentar
  1. das video lädt einfach nicht
    es liegt nicht an meinem wlan ich weine gleich ich muss lernen

    Von Berlin Fashion Fou, vor mehr als 3 Jahren

Nebelkammer Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Nebelkammer kannst du es wiederholen und üben.

  • Gib die Wirkung einer ionisierenden Strahlung auf das Luft-Alkohol-Gemisch an.

    Tipps

    Die herausgeschlagenen Teilchen befinden sich in der Hülle des Atoms.

    Lösung

    Ionisation ist der Vorgang, bei dem ein Atom (oder ein Molekül) eine negative oder positive Ladung durch den Gewinn oder Verlust von Elektronen erwirbt. Die ionisierende Strahlung wirkt auf das Atom, indem sie Elektronen aus ihm herausschlägt. Wenn die Moleküle vom Luft-Alkohol-Gemisch ionisiert werden, bilden sich Kondensationskerne, die sogenannten Tröpfchen. Diese entstehen überall entlang der Bahn unserer Strahlung. Da die Strahlungen an sich unsichtbar sind, sehen wir nur ihre Wirkung auf das Luft-Alkohol-Gemisch in der Nebelkammer.

  • Zeige die Ursache der Bildung der dicksten Streifen von Alphastrahlung auf.

    Tipps

    Achte darauf, wie stark die Wirkung der Alphastrahlen auf die Atome ist.

    Lösung

    Das Ionisationsvermögen einer Strahlung gibt an, wie stark ein Stoff von ihr ionisiert wird. Wenn die Moleküle vom Luft-Alkohol-Gemisch ionisiert werden, bilden sich Kondensationskerne, d.h. die Tröpfchen. Diese entstehen überall entlang der Bahn unserer Strahlung. Alphastrahlen schlagen beim Auftreffen auf ein Atom eher ein Elektron aus der Hülle, als $\beta$ und ${\beta}^{-}$-Teilchen. Deshalb bilden sich dickere Streifen.

  • Fasse die Eigenschaften der gebildeten Streifen und ihr Ionisationsvermögen nach ionisierten Strahlen zusammen.

    Tipps

    Achte darauf, wie schwer (oder schwerelos) die Strahlungen sind.

    Lösung

    Die Ablenkbarkeit einer Strahlung durch das magnetische Feld gibt an, wie stark ein bestimmtes Teilchen von einem magnetischen Feld abgelenkt werden kann. $\alpha$-Strahlen oder $\alpha$-Teilchen sind zweimal positiv geladen und werden daher sehr leicht durch ein konzentriertes positives Feld abgelenkt. Deshalb bilden sie kurze, dichte und gerade Streifen im Luft-Alkohol-Gemisch. Außerdem zeigen sehr wenige $\alpha$-Strahlen Richtungswechsel beim Zerstreuen und Ablenken, da sich in dem Teilchen nur ein sehr kleines positive geladen Massenzentrum befindet. $\beta$-Strahlen oder $\beta$-Teilchen haben eine höhere Reichweite und werden aufgrund ihrer einfachen negativen Ladung ebenfalls abgelenkt und lassen sich zerstreuen. Deshalb bilden sie lange, dünne und kreisförmige Bahnen. $\gamma$-Strahlen haben keine Ladung und sind somit nicht ablenkbar. Aus diesem Grund sind sie nicht nachweisbar.

    Das Ionisationsvermögen einer Strahlung gibt an, wie stark ein Stoff von ihr ionisiert wird. Es ist umso größer, je höher die Strahlungsmasse ist. $\alpha$-Strahlen sind um ein Vielfaches schwerer im Vergleich zu den zwei anderen Strahlungsarten. Deshalb schlagen sie beim Auftreffen auf ein Atom eher ein Elektron aus der Hülle als $\beta$ und ${ \beta }^{ - }$-Teilchen . Aufgrund der nicht vorhandenen Masse haben $\gamma$-Strahlen das niedrigste Ionisationsvermögen. Zusammengefassten sind $\alpha$-Strahlen hoch ionisierend, $\beta$-Strahlen mittel ionisierend und $\gamma$-Strahlen wenig ionisierend.

  • Erläutere die Volumenänderung des Gemisches in einer Expansionsnebelkammer als eine Funktion des Druckes und der Temperatur.

    Tipps

    Forme die Gleichung um, um eine Funktion $V(p,T)$ zu bekommen.

    Überschlage die Volumenänderung, wenn sich nur der Druck oder die Temperatur des Gases ändert.

    Lösung

    Betrachten wir das Luft-Alkohol-Gemisch als ein ideales Gas. Aus der thermischen Zustandsgleichung idealer Gase $pV=nRT$ kann man die Volumenänderung des Gemisches analysieren. Dafür formt man die Zustandsgleichung als eine Funktion der Temperatur und des Druckes um: $V=\frac { nRT }{ p }$ . An dieser neuen Gleichung wird deutlicher, dass das Volumen direkt proportional zu der Temperatur ist. D.h., wenn die Temperatur sinkt, soll das Volumen auch sinken. Jedoch wird auch deutlich, dass das Volumen umgekehrt proportional zu dem Druck ist. D. h., wenn der Druck sinkt, soll sich das Volumen vergrößern. Nach dem Herausziehen des Nebelkammer-Kolbens sinkt der Gasdruck stärker als die Gastemperatur. Laut der umgeformten Gleichung $V=\frac { nRT }{ p }$ vergrößert sich das Gasvolumen eher wegen der Druckabnahme als aufgrund der Temperaturabnahme.

  • Erläutere die Funktionsweise einer Expansionsnebelkammer.

    Tipps

    Alle Wörter kommen jeweils nur einmal vor.

    Lösung

    Das Funktionsprinzip einer Expansionsnebelkammer beruht auf der Übersättigung des Gemisches durch eine schnelle Expansion. Sobald die Kammer mit dem Luft-Alkohol-Gemisch gefüllt ist, wird ein Kolben herausgezogen, wodurch sich das Volumen des Gases in der Kammer vergrößert und der Druck und damit auch die Temperatur sinken. Dadurch ist das Gemisch schlagartig übersättigt und für eine kurze Zeit werden kleine Kondensationskerne als eine Nebelspur erzeugt, um ionisierende Teilchen nachzuweisen.

  • Erläutere die Funktionsweise einer Diffusionsnebelkammer.

    Tipps

    Alle Wörter kommen jeweils nur einmal vor.

    Lösung

    Das Funktionsprinzip einer Diffusionsnebelkammer beruht auf der Übersättigung des Gemisches durch eine Kühlung der Bodenplatte auf etwa -30°C. Ungefähr 10 bis 15 cm über dem Boden befinden sich Heizdrähte, um das Luft-Alkohol-Gemisch im oberen Bereich auf einer Temperatur von 15°C zu halten. Durch dieses Temperaturgefälle zwischen Boden und Decke entsteht knapp über dem Boden eine übersättigte Schicht, die aus gebildeten Kondensationskernen besteht. Diese Kammer kann viele Stunden in Betrieb bleiben, da eine Pumpe daran installiert ist. Sie saugt die freien Ionen der alten Nebelspuren ab, um die Kammer wieder zu reinigen und für neue Versuche zu verwenden.