Franck-Hertz-Versuch (Übungsvideo)
Der Franck-Hertz-Versuch ist ein wichtiges Experiment zur Bestätigung von Atommodellen. Entwickelt von Franck und Hertz, untersucht es die Wechselwirkung zwischen Elektronen und Atomen. Erfahre mehr über diskrete Energieniveaus, die Anregung von Quecksilberatomen und die Bedeutung des Experiments. Interessiert? All das und vieles mehr findest du im folgenden Text!
- Der Franck-Hertz-Versuch
- Franck-Hertz-Versuch – Aufbau
- Was passiert beim Franck-Hertz-Versuch?
- Wie entstehen die Minima?
- Was können wir aus dem Franck-Hertz-Versuch lernen?

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Franck-Hertz-Versuch (Übungsvideo) Übung
-
Beschreibe den Aufbau des Franck-Hertz-Versuchs.
TippsWelche Funktion besitzen die dargestellten Bauteile?
Was wird bei dem Versuch gemessen?
Wie wird Bewegung ins Spiel gebracht?
LösungBei dem Versuch werden freie Elektronen benötigt, die in einem Glaskolben beschleunigt werden. Um freie Elektronen zu erzeugen, wird ein Heizdraht verwendet, den die Elektronen aufgrund ihrer starken Bewegung und der Oberflächenbeschaffenheit teilweise verlassen können. Dies wird durch den glühelektrischen Effekt beschrieben. Aufgrund der Eigenschaft Elektronen abzugeben, heißt dieses Bauteil Kathode.
Die Elektronen befinden sich nun in einem Glaskolben, der mit Quecksilberatomen (Hg-Atomen) gefüllt ist.
Um die Elektronen in Bewegung zu versetzten, wird zwischen der Kathode und einem Gitter innerhalb der Röhre eine regelbare Beschleunigungsspannung angelegt. Das Gitter wird also positiv geladen, um die Elektronen anzuziehen. Du kannst dir Kathode und Gitter auch als Kondensator vorstellen und du weißt, dass in einem Kondensator Ladungen beschleunigt werden.
Da das Gitter Löcher hat, können manche Elektronen das Gitter passieren und treffen auf die Anode. Sie heißt Anode, weil sie Elektronen aufnimmt.
Wird eine Gegenspannung angelegt, dann wird das Gitter zusätzlich positiv und die Anode negativ geladen. Dadurch werden die Elektronen nach dem Passieren des Gitters abgebremst, da sie von der negativ geladenen Anode abgestoßen werden.
-
Skizziere zur Auswertung das Beschleunigungsspannung-Strom-Diagramm.
Tipps$U_B$ ist die Beschleunigungsspannung.
Was geschieht mit den beschleunigten Elektronen im Glaskolben?
LösungZur Auswertung des Versuchs wird der Anodenstrom bei Veränderung der Beschleunigungsspannung gemessen. Der Anodenstrom beschreibt die Zahl der Elektronen, die in einem gewissen Zeitintervall an dem Gitter vorbei bis auf die Anode treffen.
Es fällt auf, dass die Stromstärke zwar im Mittel ansteigt, in regelmäßigen Abständen jedoch Minima auftreten. Diese Minima lassen darauf schließen, dass die Beschleunigungsspannung den Elektronen bei diesem Wert genau so viel Energie übertragen hat, dass sie mit den Quecksilberatomen wechselwirken können. Das heißt, sie stoßen nicht nur zusammen, sondern übertragen bei diesem Zusammenstoß ihre kinetische Energie auf das Atom.
Wenn ein Minimum vorliegt, findet diese Energieübertragung jeweils so kurz vor dem Gitter statt, dass die folgende Strecke nicht ausreicht, das Elektron so weit zu beschleunigen, dass es die Anode trotz der Gegenspannung noch erreicht.
Mit weiter steigender Beschleunigungsspannung erhalten sie diesen Energiewert immer früher, sodass die restliche Wegstrecke bis zum Gitter ausreicht, die Elektronen genügend zu beschleunigen. Wir bewegen uns in dem Diagramm auf das nächste Maximum zu.
Das zweite Minimum kann man einfach dadurch erklären, dass die Elektronen insgesamt zwei mal ihre Energie an die Hg-Atome übertragen können. Einmal etwa in der Mitte der Strecke zwischen Kathode und Gitter und das zweite Mal kurz vor dem Gitter.
-
Stelle den Zusammenhang zwischen dem Franck-Hertz-Versuch und dem Bohrschem Atommodell dar.
TippsWas ist das besondere am Bohrschen Atommodell?
Wie hängt die kinetische Energie eines Elektrons mit der Beschleunigungsspannung zusammen?
LösungDie freien Elektronen, die an der Kathode austreten, werden durch eine Beschleunigungsspannung U in Richtung Gitter beschleunigt. Die Energie, die an sie in Form von kinetischer Energie übertragen wird, ist $E_{\text{kin}}=e\cdot U$, also die Elektronenladung mal Beschleunigungsspannung.
Diese Energie übertragen sie bei einem Zusammenstoß an ein Gasatom und regen es somit an. Das heißt anschaulich im Bohrschen Atommodell, dass ein Elektron aus der Atomhülle auf eine höhere Schale gehoben wird. Direkt danach sendet das Atom ein Photon mit genau der Energie aus, die an das Atom vorher übertragen wurde. Dies geschieht dadurch, dass das Elektron wieder auf seine Ursprüngliche Schale zurückfällt und dabei ein Photon mit der Energie $E_{\text{Photon}}=h\cdot f$ aussendet.
-
Berechne die Wellenlänge der emittierten Strahlung in nm, wenn der Glaskolben mit Neongas gefüllt ist.
TippsEs wird Energie von einem beschleunigten Elektron auf ein Atom abgegeben, das diese Energie wiederum in Form eines Photons emittiert.
Die Energie ist eine Erhaltungsgröße, das heißt, es gilt Energieerhaltung.
LösungWie wir bei der Auswertung des Versuchs herausgefunden haben, steht der Abstand zwischen den Maxima im Diagramm für die Energiedifferenz zwischen Grundzustand und erstem angeregten Zustand des verwendeten Atoms, wenn wir die Einheit der Spannung V durch die Einheit der Energie eV ersetzen.
Es gilt Energieerhaltung. Wie immer bei Energieumwandlungen setzen wir also zwei verschiedene Energien gleich. In diesem Fall den Wert der kinetischen Energie, die auf das Atom übertragen wird, und die Energie des vom Atom emittierten Photons.
$E_{\text{Photon}}=\Delta E_{\text{kin}}$
Wir kennen folgende Formeln, Werte und Konstanten:
$\begin{array}{lll} \Delta E_{\text{kin}} &=& e\cdot U_B \\ E_{\text{Photon}} &=& h\cdot f \\ f &=& \frac{c}{\lambda} \\ \\ \Delta U_B &=& 20~V \\ \\ h &=& 4,136\cdot 10^{-15} \text{ eV}\\ c &=& 3\cdot 10^8 \frac{\text{m}}{\text{s}} \end{array}$
Diese Formeln müssen nur umgeformt und Werte eingesetzt werden:
$\begin{array}{llll} E_{\text{Photon}} &=& \Delta E_{\text{kin}} & \\ h\cdot f &=& e\cdot U_B & | f=\frac{c}{\lambda}\\ h\cdot \frac{c}{\lambda} &=& e\cdot U_B & |\cdot \lambda :(e\cdot U_B) \\ \frac{h\cdot {c}}{e\cdot U_B} &=& {\lambda} & \\ \\ {\lambda} &=& \frac{4,136\cdot 10^{-15} \text{ eV}\cdot {3\cdot 10^8 \frac{\text{m}}{\text{s}}}}{e\cdot 20 \text{ V} } & \\ &=& 6,20\cdot 10^{-8} \text{ m}\approx 62 \text{ nm} & \end{array}$
-
Gib wichtige Formeln für den Franck-Hertz-Versuch an.
TippsWelche Teilchen werden bei dem Versuch betrachtet?
Überlege dir, wie manche der Teilchen beschleunigt wurden.
LösungDie freien Elektronen, die an der Kathode austreten, werden durch eine Beschleunigungsspannung U in Richtung Gitter beschleunigt. Die Energie, die an sie in Form von kinetischer Energie übertragen wird, ist $E_{\text{kin}}=e\cdot U$, also die Elektronenladung mal Beschleunigungsspannung.
Diese Energie übertragen sie bei einem Zusammenstoß an ein Gasatom und regen es somit an. Das heißt anschaulich im Bohrschen Atommodell, dass ein Elektron aus der Atomhülle auf eine höhere Schale gehoben wird. Direkt danach sendet das Atom ein Photon mit genau der Energie aus, die an das Atom vorher übertragen wurde. Dies geschieht dadurch, dass das Elektron wieder auf seine ursprüngliche Schale zurückfällt und dabei ein Photon mit der Energie $E_{\text{Photon}}=h\cdot f$ aussendet.
Durch diese Formel können wir auch die Frequenz des Lichts bestimmen, da h eine Konstante ist. Kennen wir seine Frequenz, dann natürlich auch seine Wellenlänge, da der Zusammenhang zwischen beiden $\lambda=\frac{c}{f}$ lautet. c ist die Lichtgeschwindigkeit und beträgt 300.000 km/s.
-
Erkläre das Leuchten beim Franck-Hertz-Versuch mit Neongas.
TippsWie hängen Energie und Wellenlänge zusammen?
Erinnere dich an das Lichtspektrum.
LösungDie kinetische Energie der freien Elektronen wird auf die Elektronen der Neongas-Atome übertragen. Man sagt auch, die Neonatome werden angeregt. Von diesem Zustand wechseln sie nicht direkt in ihren Grundzustand, sondern auf einen etwas niedrigeren angeregten Zustand, indem sie ein Photon mit einem Teil der zuvor erhaltenen Energie aussenden. Erst danach emittieren sie den Rest der Energie in einem weiteren Photon.
Die Energiedifferenz zwischen den höchsten angeregten Zuständen und dem Zwischenniveau beträgt etwa 2 eV.
$E_{\text{Photon}}=\Delta E$
Wir kennen folgende Formeln, Werte und Konstanten:
$\begin{array}{lll} E_{\text{Photon}} &=& h\cdot f \\ f &=& \frac{c}{\lambda} \\ \\ \Delta E &=& 2~eV \\ \\ h &=& 4,136\cdot 10^{-15} \text{ eV} \\ c &=& 3\cdot 10^8 \frac{\text{m}}{\text{s}} \end{array}$
Diese Formeln müssen nur umgeformt und Werte eingesetzt werden:
$\begin{array}{llll} E_{\text{Photon}} &=& \Delta E & \\ h\cdot f &=& \Delta E & \\ h\cdot \frac{c}{\lambda} &=& \Delta E & |\cdot \lambda :\Delta E \\ \frac{h\cdot {c}}{\Delta E} &=& {\lambda} & \\ \\ {\lambda} &=& \frac{4,136\cdot 10^{-15} \text{ eV}\cdot {3\cdot 10^8 \frac{\text{m}}{\text{s}}}}{\text{2 eV} } & \\ &=& 62\cdot 10^{-8} \text{ m} & \\ &\approx & 620 \text{ nm} & \end{array}$
Diese Wellenlänge entspricht der Farbe Orange, wobei das Leuchten bis in das rote Lichtspektrum übergeht, da die Übergänge nicht genau 2 eV betragen.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie