30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Franck-Hertz-Versuch (Übungsvideo) 07:45 min

Textversion des Videos

Transkript Franck-Hertz-Versuch (Übungsvideo)

Herzlich willkommen zu diesem Übungsvideo zum Franck-Hertz-Experiment. Wir werden hier gemeinsam 4 Aufgaben bearbeiten, wovon einige bereits in vergangenen Abiturprüfungen aufgetaucht sind. Für Bearbeitung dieser Aufgaben solltest du natürlich wissen, was das Franck-Hertz-Experiment überhaupt ist. Außerdem solltest du etwas über das Bohrsche Atommodell und die Energieniveaus in einem Atom wissen.

Übersicht über das Franck-Hertz-Experiment

Die Aufgaben bauen schrittweise aufeinander auf. Zuerst besprechen wir den Aufbau des Experimentes und was eigentlich gemessen wird. Dann kommt eine Frage zur grafischen Auswertung und darauf folgend klären wir, in welcher Verbindung das mit dem Bohrschen Atommodell steht. Zum Schluss berechnen wir noch die Wellenlänge der emittierten Strahlung.

Aufgabe 1 - Der Versuchsaufbau

Beginnen wir mit der ersten Aufgabe. Hier soll eine Skizze angefertigt werden und der Messvorgang beschrieben werden. Der Versuchsaufbau besteht hauptsächlich aus einem Glaskolben, in dem sich ein Gas mit sehr niedrigem Druck befindet. Das ist meist Quecksilber oder Neon.

Beschleunigung der Elektronen

In diesem Kolben sollen Elektronen beschleunigt werden, also braucht man eine Kathode. Diese ist eine Glühwendel und wird über eine Heizspannung erhitzt, so dass Elekronen freigesetz werden. Diese Elektronen werden zu einem Gitter beschleunigt. Dafür liegt zwischen Gitter und Kathode eine regelbare Beschleunigungsspannung U_B. Die Elektronen fliegen durch das Gitter durch und werden an der Anode aufgefangen.

Messen des Elektrostroms

Mit einem Strommessgerät kann der Elektronenstrom zwischen Anode und Kathode gemessen werden. Allerdings wird zwischen Anode und Gitter noch eine geringe Gegenspannung angelegt. Diese soll dazu dienen, dass nur die Elektronen ankommen, die auch eine ausreichend hohe kinetische Energie besitzen. Für die Messung werden nun die Werte der Stromstärke für verschiedene Beschleunigungsspannungen aufgenommen.

Aufgabe 2 - Minimus und Maximus

Kommen wir zur zweiten Aufgabe. Die Auswertung der Messergebnisse des Experiments ergibt dieses Diagramm. Erkläre das Auftreten des ersten Maximums und des folgenden Minimums der Stromstärke.

Also: Die Kurve zeigt die Stromstärke in Abhängigkeit von der Beschleunigungsspannung. Mit zunehmender Spannung steigt zunächst die Stromstärke, doch dann fällt sie plötzlich ab. Das können wir dadurch erklären, dass die Elektronen einen Teil ihrer kinetischen Energie an die Quecksilberatome abgegeben haben. Nach dieser Wechselwirkung werden sie wieder neu beschleunigt.

Doch erfolgt dieser Zusammenstoß kurz vor dem Gitter, dann reicht die restliche Strecke nicht aus, um die Elektronen so zu beschleunigen, dass sie es bis zur Anode schaffen. Sie werden vom Gegenfeld abgebremst und vom Gitter eingefangen. Beim ersten Maximum haben die Elektronen also gerade so viel Energie, dass sie diese noch nicht an die Quecksilberatome abgeben.

Steigung der Beschleunigungsspannung

Mit steigender Spannung geben dann die ersten Elektronen ihre Energie ab und schaffen es nicht zur Anode. Im Minimum sind es dann die meisten Elektronen, die abgefangen werden. Erst, wenn die Beschleunigungsspannung weiter steigt, schaffen es die Elektronen wieder die Anode zu erreichen, auch nachdem sie eine Energieportion abgegeben haben. Damit ist die Frage 2 beantwortet.

Aufgabe 3 - Das Bohrsche Atommodell

Die dritte Aufgabe lautet: Erläutere, inwiefern die Ergebnisse des Experimentes das Bohrsche Atommodell stützen. Die eben beschriebenen Messergebnisse zeigen, dass der Strom nur bei bestimmten Spannungswerten einbricht. Diese Abstände sind regelmäßig und beschreiben immer eine gleiche Spannungsdifferenz. In diesem Fall sind das 4,9 Volt.

Daraus ergibt sich eine Energiedifferenz Delta E gleich e mal Delta U gleich 4,9 Elektronenvolt. Immer wenn die Elektronen diese Energie erreicht haben, geben sie diese an die Quecksilberatome ab. Vorher aber noch nicht! Das zeigt uns, dass die Quecksilberatome nur den Energiebetrag von 4,9 Elektronenvolt aufnehmen können. Diese “Energieportion” führt dazu, dass das Atom in einen angeregten Zustand übergeht.

Die verschiedenen Energieniveaus

Dieses Ergebnis bestätigt die von Niels Bohr postulierte quantenhafte Energieabsorption der Atome. Bei Bohrs Atommodell können die Elektronen in der Hülle nur diskrete Energieniveaus besetzen. Um von einem tieferen zu einem höheren Niveau zu springen, ist dann eine charakteristische Energiedifferenz Delta E nötig.

Wenn wir uns das Energieniveauschema von Quecksilber anschauen, sehen wir, das die Energiedifferenz zwischen dem Grundzustand und dem ersten angeregten Zustand genau 4,9 Elektronenvolt beträgt. Somit wird durch das Experiment Bohrs Atommodell eindruckvoll bestätigt.

Aufgabe 4 - Wellenlänge und Spektralbereich

Nun noch zur vierten Aufgabe: Nach der Anregung geben die Quecksilberatome ihre Anregungsenergie in Form von Photonen ab. Berechne die Wellenlänge der emittierten Strahlung und gib den Spektralbereich an. Nach der von Einstein angegebenen Formel berechnet sich die Energie von Photonen als Produkt des Planckschen Wirkungsquantums h und der Frequenz f des Photons, wobei die Frequenz die Lichtgeschwindigkeit c durch die Wellenlänge Lambda ist.

Das Plancksche Wirkungsquantum

Stellen wir nach der Wellenlänge um, so ist Lambda gleich h mal c durch E Photon. Die Energie der Photonen ist die Anregungsenergie des Atoms. Und das ist ja die kinetische Energie der Elektronen. Also folgt, dass E Photon gleich E kin gleich 4,9 Elektronenvolt. Setzen wir nun alles in die Formel ein. Das Plancksche Wirkungsquantum kann man mit verschiedenen Einheiten angeben.

Für unsere Rechnung bietet sich die Angabe 4,136 mal 10 hoch Minus 15 Elektronenvolt mal Sekunde an, weil die Energie bisher auch in Elektronenvolt angegeben ist. Die Lichtgeschwindigkeit ist rund 3 mal 10 hoch 8 Metern pro Sekunde. Und im Zähler stehen die 4,9 Elektronenvolt. Die Elektronenvolt und Sekunden kürzen sich und das Ergebnis lautet 2,53 mal 10 hoch Minus 7 Meter. Das sind 253 Nanometer und das ist der Bereich von Ultravioletter Strahlung.

Jetzt haben wir alles geschafft. Ich hoffe, mit diesen 4 Aufgaben bist du gut gerüstet für deine nächste Prüfung und kannst dich auch etwas fürs Abi vorbereiten. Viel Erfolg!

5 Kommentare
  1. @Koray E.
    h ist das Plank'sche Wirkungsquantum, dies ist eine Konstante der Physik.

    Es gibt zwei mögliche Angaben davon in Joulsekunden J*s und in Elektronenvoltsekunden eV*s
    Dabei gilt: h=6,6260755 * 10^-34 J*s = 4,1359963271 *10^-15 eV*s.
    Da gilt 1 J = 6,242*10^18 eV

    Ich hoffe ich konnte dir weiterhelfen.

    Von Karsten Schedemann, vor mehr als 2 Jahren
  2. Von wo kommen diese 4,136 für h? ( Ab Minute 06:50 )

    Von Koray E., vor mehr als 2 Jahren
  3. Habe immer Probleme mit dem umrechnen.. Wie rechnet man eV in V oder anders herum um?

    Von Mariella Vonderwense, vor mehr als 4 Jahren
  4. Mega gutes Video !

    Von Jxgoldmann, vor mehr als 4 Jahren
  5. Moin! Gut erklärtes Video, verstehe nur eine Sache nicht:
    Müsste es nicht eigentlich so sein, dass bei 4,9 Volt ein Minimum vorhanden ist, da dort die Elektronen ihre Energie an die Hg Atome abgeben und somit kein/kaum Elektronenfluss am Amperemeter stattfindet ?

    Von Pauldantzer, vor mehr als 4 Jahren

Franck-Hertz-Versuch (Übungsvideo) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Franck-Hertz-Versuch (Übungsvideo) kannst du es wiederholen und üben.

  • Gib wichtige Formeln für den Franck-Hertz-Versuch an.

    Tipps

    Welche Teilchen werden bei dem Versuch betrachtet?

    Überlege dir, wie manche der Teilchen beschleunigt wurden.

    Lösung

    Die freien Elektronen, die an der Kathode austreten, werden durch eine Beschleunigungsspannung U in Richtung Gitter beschleunigt. Die Energie, die an sie in Form von kinetischer Energie übertragen wird, ist $E_{\text{kin}}=e\cdot U$, also die Elektronenladung mal Beschleunigungsspannung.

    Diese Energie übertragen sie bei einem Zusammenstoß an ein Gasatom und regen es somit an. Das heißt anschaulich im Bohrschen Atommodell, dass ein Elektron aus der Atomhülle auf eine höhere Schale gehoben wird. Direkt danach sendet das Atom ein Photon mit genau der Energie aus, die an das Atom vorher übertragen wurde. Dies geschieht dadurch, dass das Elektron wieder auf seine ursprüngliche Schale zurückfällt und dabei ein Photon mit der Energie $E_{\text{Photon}}=h\cdot f$ aussendet.

    Durch diese Formel können wir auch die Frequenz des Lichts bestimmen, da h eine Konstante ist. Kennen wir seine Frequenz, dann natürlich auch seine Wellenlänge, da der Zusammenhang zwischen beiden $\lambda=\frac{c}{f}$ lautet. c ist die Lichtgeschwindigkeit und beträgt 300.000 km/s.

  • Beschreibe den Aufbau des Franck-Hertz-Versuchs.

    Tipps

    Welche Funktion besitzen die dargestellten Bauteile?

    Was wird bei dem Versuch gemessen?

    Wie wird Bewegung ins Spiel gebracht?

    Lösung

    Bei dem Versuch werden freie Elektronen benötigt, die in einem Glaskolben beschleunigt werden. Um freie Elektronen zu erzeugen, wird ein Heizdraht verwendet, den die Elektronen aufgrund ihrer starken Bewegung und der Oberflächenbeschaffenheit teilweise verlassen können. Dies wird durch den glühelektrischen Effekt beschrieben. Aufgrund der Eigenschaft Elektronen abzugeben, heißt dieses Bauteil Kathode.

    Die Elektronen befinden sich nun in einem Glaskolben, der mit Quecksilberatomen (Hg-Atomen) gefüllt ist.

    Um die Elektronen in Bewegung zu versetzten, wird zwischen der Kathode und einem Gitter innerhalb der Röhre eine regelbare Beschleunigungsspannung angelegt. Das Gitter wird also positiv geladen, um die Elektronen anzuziehen. Du kannst dir Kathode und Gitter auch als Kondensator vorstellen und du weißt, dass in einem Kondensator Ladungen beschleunigt werden.

    Da das Gitter Löcher hat, können manche Elektronen das Gitter passieren und treffen auf die Anode. Sie heißt Anode, weil sie Elektronen aufnimmt.

    Wird eine Gegenspannung angelegt, dann wird das Gitter zusätzlich positiv und die Anode negativ geladen. Dadurch werden die Elektronen nach dem Passieren des Gitters abgebremst, da sie von der negativ geladenen Anode abgestoßen werden.

  • Erkläre das Leuchten beim Franck-Hertz-Versuch mit Neongas.

    Tipps

    Wie hängen Energie und Wellenlänge zusammen?

    Erinnere dich an das Lichtspektrum.

    Lösung

    Die kinetische Energie der freien Elektronen wird auf die Elektronen der Neongas-Atome übertragen. Man sagt auch, die Neonatome werden angeregt. Von diesem Zustand wechseln sie nicht direkt in ihren Grundzustand, sondern auf einen etwas niedrigeren angeregten Zustand, indem sie ein Photon mit einem Teil der zuvor erhaltenen Energie aussenden. Erst danach emittieren sie den Rest der Energie in einem weiteren Photon.

    Die Energiedifferenz zwischen den höchsten angeregten Zuständen und dem Zwischenniveau beträgt etwa 2 eV.

    $E_{\text{Photon}}=\Delta E$

    Wir kennen folgende Formeln, Werte und Konstanten:

    \begin{align*} E_{\text{Photon}}&=h\cdot f\\ f&=\frac{c}{\lambda}\\ &~\\ \Delta E&=2~eV \\ &~\\ h&=4,136\cdot 10^{-15} \text{ eV}\\ c&=3\cdot 10^8 \frac{\text{m}}{\text{s}} \end{align*}

    Diese Formeln müssen nur umgeformt und Werte eingesetzt werden:

    \begin{align*} E_{\text{Photon}}&=\Delta E\\ h\cdot f &=\Delta E\\ h\cdot \frac{c}{\lambda} &=\Delta E \qquad|\cdot \lambda :\Delta E \\ \frac{h\cdot {c}}{\Delta E}&={\lambda}\\ {\lambda}&=\frac{4,136\cdot 10^{-15} \text{ eV}\cdot {3\cdot 10^8 \frac{\text{m}}{\text{s}}}}{\text{ eV} }\\ &=62\cdot 10^{-8} \text{ m}\approx 620 \text{ nm} \end{align*}

    Diese Wellenlänge entspricht der Farbe Orange, wobei das Leuchten bis in das rote Lichtspektrum übergeht, da die Übergänge nicht genau 2 eV betragen.

  • Skizziere zur Auswertung das Beschleunigungsspannung-Strom-Diagramm.

    Tipps

    $U_B$ ist die Beschleunigungsspannung.

    Was geschieht mit den beschleunigten Elektronen im Glaskolben?

    Lösung

    Zur Auswertung des Versuchs wird der Anodenstrom bei Veränderung der Beschleunigungsspannung gemessen. Der Anodenstrom beschreibt die Zahl der Elektronen, die in einem gewissen Zeitintervall an dem Gitter vorbei bis auf die Anode treffen.

    Es fällt auf, dass die Stromstärke zwar im Mittel ansteigt, in regelmäßigen Abständen jedoch Minima auftreten. Diese Minima lassen darauf schließen, dass die Beschleunigungsspannung den Elektronen bei diesem Wert genau so viel Energie übertragen hat, dass sie mit den Quecksilberatomen wechselwirken können. Das heißt, sie stoßen nicht nur zusammen, sondern übertragen bei diesem Zusammenstoß ihre kinetische Energie auf das Atom.

    Wenn ein Minimum vorliegt, findet diese Energieübertragung jeweils so kurz vor dem Gitter statt, dass die folgende Strecke nicht ausreicht, das Elektron so weit zu beschleunigen, dass es die Anode trotz der Gegenspannung noch erreicht.

    Mit weiter steigender Beschleunigungsspannung erhalten sie diesen Energiewert immer früher, sodass die restliche Wegstrecke bis zum Gitter ausreicht, die Elektronen genügend zu beschleunigen. Wir bewegen uns in dem Diagramm auf das nächste Maximum zu.

    Das zweite Minimum kann man einfach dadurch erklären, dass die Elektronen insgesamt zwei mal ihre Energie an die Hg-Atome übertragen können. Einmal etwa in der Mitte der Strecke zwischen Kathode und Gitter und das zweite Mal kurz vor dem Gitter.

  • Stelle den Zusammenhang zwischen dem Franck-Hertz-Versuch und dem Bohrschem Atommodell dar.

    Tipps

    Was ist das besondere am Bohrschen Atommodell?

    Wie hängt die kinetische Energie eines Elektrons mit der Beschleunigungsspannung zusammen?

    Lösung

    Die freien Elektronen, die an der Kathode austreten, werden durch eine Beschleunigungsspannung U in Richtung Gitter beschleunigt. Die Energie, die an sie in Form von kinetischer Energie übertragen wird, ist $E_{\text{kin}}=e\cdot U$, also die Elektronenladung mal Beschleunigungsspannung.

    Diese Energie übertragen sie bei einem Zusammenstoß an ein Gasatom und regen es somit an. Das heißt anschaulich im Bohrschen Atommodell, dass ein Elektron aus der Atomhülle auf eine höhere Schale gehoben wird. Direkt danach sendet das Atom ein Photon mit genau der Energie aus, die an das Atom vorher übertragen wurde. Dies geschieht dadurch, dass das Elektron wieder auf seine Ursprüngliche Schale zurückfällt und dabei ein Photon mit der Energie $E_{\text{Photon}}=h\cdot f$ aussendet.

  • Berechne die Wellenlänge der emittierten Strahlung in nm, wenn der Glaskolben mit Neongas gefüllt ist.

    Tipps

    Es wird Energie von einem beschleunigten Elektron auf ein Atom abgegeben, das diese Energie wiederum in Form eines Photons emittiert.

    Die Energie ist eine Erhaltungsgröße, das heißt, es gilt Energieerhaltung.

    Lösung

    Wie wir bei der Auswertung des Versuchs herausgefunden haben, steht der Abstand zwischen den Maxima im Diagramm für die Energiedifferenz zwischen Grundzustand und erstem angeregten Zustand des verwendeten Atoms, wenn wir die Einheit der Spannung V durch die Einheit der Energie eV ersetzen.

    Es gilt Energieerhaltung. Wie immer bei Energieumwandlungen setzen wir also zwei verschiedene Energien gleich. In diesem Fall den Wert der kinetischen Energie, die auf das Atom übertragen wird, und die Energie des vom Atom emittierten Photons.

    $E_{\text{Photon}}=\Delta E_{\text{kin}}$

    Wir kennen folgende Formeln, Werte und Konstanten:

    \begin{align*} \Delta E_{\text{kin}}&=e\cdot U_B\\ E_{\text{Photon}}&=h\cdot f\\ f&=\frac{c}{\lambda}\\ &~\\ \Delta U_B&=20~V \\ &~\\ h&=4,136\cdot 10^{-15} \text{ eV}\\ c&=3\cdot 10^8 \frac{\text{m}}{\text{s}} \end{align*}

    Diese Formeln müssen nur umgeformt und Werte eingesetzt werden:

    \begin{align*} E_{\text{Photon}}&=\Delta E_{\text{kin}}\\ h\cdot f &=e\cdot U_B \qquad |f=\frac{c}{\lambda}\\ h\cdot \frac{c}{\lambda} &=e\cdot U_B\qquad|\cdot \lambda :(e\cdot U_B) \\ \frac{h\cdot {c}}{e\cdot U_B}&={\lambda}\\ {\lambda}&=\frac{4,136\cdot 10^{-15} \text{ eV}\cdot {3\cdot 10^8 \frac{\text{m}}{\text{s}}}}{e\cdot 20 \text{ V} }=6,20\cdot 10^{-8} \text{ m}\approx 62 \text{ nm} \end{align*}