Magnete – Eigenschaften
Magnete begegnen uns überall - am Kühlschrank, in der Schule und sogar bei deiner Modelleisenbahn. Erfahre, dass jeder Magnet einen Nord- und Südpol besitzt. Lerne, wie Magnete reagieren, wenn sie aufeinandertreffen. Spannend? Vertiefe dein Wissen über magnetische Materialien und tauche ein in die magnetische Welt!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Magnete – Eigenschaften Übung
-
Nenne die Materialien, an denen der Magnet hält.
TippsEs sind drei Gegenstände hier richtig.
Magnete halten nur an bestimmten Metallen oder anderen Magneten.
Metalle erkennt man daran, dass sie zumindest etwas glänzen.
LösungDamit ein Magnet an einem Material haftet, muss dieses entweder ein Magnet oder magnetisch sein. Damit es magnetisch ist, muss das Material zum Beispiel Eisen, Kobalt oder Nickel enthalten.
Alle anderen Materialien werden nicht von einem Magneten angezogen. Es gibt jedoch auch die Möglichkeit, unter Nutzung von elektrischem Strom sogenannte Elektromagnete zu bauen. Hierbei finden dann auch andere Metalle Verwendung.
-
Entscheide, ob sich die Magneten anziehen oder abstoßen.
TippsWenn sich die Magneten aufeinander zubewegen, spricht man von Anziehung.
Wenn sich die Magneten voneinander entfernen, spricht man von Abstoßung.
Ob sich die Magneten abstoßen oder anziehen, hängt von der Polung der Magnete ab.
LösungDie Polgesetze lauten:
Gleichnamige Pole stoßen sich ab und ungleichnamige Pole ziehen sich an.
Das bedeutet, dass sich zwei Nordpole genauso wie zwei Südpole abstoßen. Ein Nordpol und ein Südpol hingegen ziehen sich an.
-
Erkläre die Magnetisierung und die Entmagnetisierung.
TippsNicht alle Metalle sind magnetisch, in der Schule werden drei behandelt.
LösungDas Modell der Elementarmagnete sagt aus, dass in jedem Material kleine Magnete mit einem Nordpol und einem Südpol vorhanden sind. Diese werden zur Anschaulichkeit meist genau so eingefärbt wie die Magnete von außen.
Dieses Modell hat sich entwickelt, weil man früher Magnete immer weiter zerteilt hat. Man stellte dabei fest, dass diese immer noch zwei Pole besitzen. Man ging davon aus, dass man diese immer weiter zerlegen kann, bis man nur noch einen Elementarmagneten vor sich hat.
Bei einem Magneten sind diese Elementarmagnete sehr stark geordnet und lassen sich auch nicht so leicht in Unordnung bringen.
Bei einem magnetischen Material sind die Elementarmagnete so lange ungeordnet, bis man einen Magneten in seine Nähe bringt. Wenn der Magnet in die Nähe kommt, werden die Elementarmagnete geordnet. Diese lassen sich jedoch sehr leicht wieder in Unordnung bringen. Man spricht vom Magnetisieren und Entmagnetisieren.
-
Wähle geeignete Experimente aus, um die Magnete nach ihrer Stärke zu ordnen.
TippsUm die Magnete nach ihrer Stärke zu ordnen, müssen diese verglichen werden.
Es gilt, dass die Stärke des Magneten nur auf magnetische Materialien wirkt.
LösungUm die Magnete nach ihrer Stärke zu ordnen, müssen diese jeweils einzeln betrachtet werden. Man kann zum Beispiel versuchen, zu testen, wie viele Büroklammern die Magneten anheben können. Oder bis in welche Entfernung sie ein Material bewegen können.
-
Nenne die drei magnetischen Metalle.
TippsEs gibt viele metallische Elemente. Sie alle haben gemeinsam, dass sie elektrischen Strom leiten können. Von diesen sind aber nur wenige magnetisch.
LösungIn der Schule werden im Wesentlichen drei magnetische Metalle benannt. Diese sind Eisen, Kobalt und Nickel. Zudem sind viele Metallmischungen, sogenannte Legierungen, magnetisch.
Diese Metallmischungen enthalten mindestens eines der Metalle Eisen, Kobalt und Nickel. Jedoch können sie teilweise noch stärker magnetisiert werden. Die stärksten Magnete bestehen aus Neodym-Eisen-Bor.
-
Erkläre das Experiment mit der sich bewegenden Münze.
TippsJeder Versuch dient der Lösung einer Frage.
Man kann nur ein Phänomen erklären, wenn man dieses schon einmal gesehen oder davon gehört hat.
Wie geht ihr im Unterricht vor?
LösungDas Anlegen eines Versuchsprotokolls ist orientiert am Weg des naturwissenschaftlichen Erkenntnisgewinns. Man geht mit bestimmten Vorstellungen und Wissen durch die Welt, doch irgendwann begegnet man einem Phänomen, das man nicht so einfach erklären kann.
An dieser Stelle stellt man sich eine Frage und versucht diese zu lösen. Dazu plant man einen oder sogar mehrere Versuche und führt diese durch. Dabei beobachtet man das Experiment. Im Anschluss wertet man die Beobachtung aus und erklärt die Beobachtung. Zum Schluss nutzt man die neuen Erkenntnisse, um die Problemfrage zu lösen.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie