Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Interferenz und Photonen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.3 / 7 Bewertungen
Die Autor*innen
Avatar
Kalo
Interferenz und Photonen
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Interferenz und Photonen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Interferenz und Photonen kannst du es wiederholen und üben.
  • Tipps

    Der Fotoeffekt besteht in der Auslösung von Elektronen aus Atomverbänden durch Bestrahlung.

    Der Fotoeffekt setzt erst bei einer Mindestfrequenz ein.

    Die Energie der herausgelösten Elektronen hängt nicht von der Intensität der Strahlung, sondern von ihrer Frequenz ab.

    Die Energie einer Welle ist ihrer Intensität proportional.

    Lösung

    Der Fotoeffekt besteht in der Auslösung von Elektronen aus Atomverbänden durch Bestrahlung. Weil die Energie einer Welle ihrer Intensität proportional ist, müsste intensivere Bestrahlung Elektronen mit höherer Energie freisetzen. Das tritt aber beim Fotoeffekt nicht ein: intensivere Bestrahlung setzt zwar mehr Elektronen frei, aber nicht schnellere. Die Energie der Elektronen hängt dagegen von der Frequenz der eingesetzten Strahlung ab. Außerdem sollte bei kontinuierlicher Einwirkung einer Welle auf den Atomverband auch bei schwacher Intensität nach längerer Zeit die Auslösearbeit geleistet sein. Das ist aber beim Fotoeffekt nicht der Fall: Liegt die Frequenz unterhalb eines Minimalwerts, werden überhaupt keine Elektronen aus dem Verband gelöst, auch bei langer Bestrahlungsdauer. Die Erklärung Einsteins lautete, dass die Energieübertragung der Strahlung in Portionen oder Quanten geschieht, deren Größe als $E=h*f$ zu berechnen ist. Da höchstens ein Photon mit einem Elektron reagiert, werden Elektronen nicht freigesetzt, solange die Energie eines einzelnen Photons nicht ausreicht, die Ablösearbeit zu leisten.

  • Tipps

    Interferenzen entstehen durch Wellen.

    Fotoeffekt und Compton-Effekt sind nicht mit Wellenmodellen des Lichts erklärbar.

    Lösung

    Der empirische Nachweis von Interferenzmustern beim Durchgang durch die Doppelspaltblende belegt die Wellennatur des Lichts. Die Frequenzabhängigkeit der Ergebnisse des Fotoeffekts und die Frequenzänderung beim Compton-Effekt sind aber bisher nur mit der diskreten Natur von Licht-Teilchen erklärbar. Wir haben eine bewährte Einsicht, der neue Erfahrungen widersprechen, ohne sie verwerfen zu können. Die Interferenzen sind nicht wegzuerklären. Wir müssen folgern, dass Licht sowohl wellenartig ausgebreitet als auch körperhaft begrenzt sein muss, obwohl das allen verständlichen Vorstellungen widerspricht. Physiker mussten seit 1905 „anders" denken lernen.

  • Tipps

    Befinden sich in gegebenem Volumen viele freibewegliche Teilchen, sind zwischen ihnen viele Stöße zu erwarten.

    Will man Stöße verhindern, muss man die Teilchendichte senken.

    Lösung

    Die Intensität des emittierten Lichts ist durch die Energie pro Zeit und Fläche bestimmt. Für ein definiertes Zeit-Flächen-Produkt bestimmt also die Energieabgabe die Intensität. Die Energie von Licht als Photonenstrom berechnet man mit $E=N \cdot h \cdot f$, N hier die Anzahl der Photonen je Zeiteinheit und Flächenstück. Je geringer die Anzahl der Photonen sein soll, desto geringer muss die Energieabgabe bzw. die Intensität der Quelle bei gegebener Frequenz sein.

  • Tipps

    Sind bei einem Strom aus Photonen die relativen Häufigkeiten in Raum und Zeit stabil, kann der Strom eventuell als Wahrscheinlichkeitsverteilung eines Zufallsprozesses beschrieben werden.

    Eine definierte Wahrscheinlichkeitsverteilung lässt sich oft mit einer stetigen Funktion beschreiben.

    Stetige Funktionen können oft analytisch miteinander verknüpft werden, im einfachsten Fall z. B. durch einfache Proportionalitätsfaktoren.

    Lösung

    Die Lichtausbreitung als statistischen Strom aus einzelnen Photonen zu beschreiben, führt auf die Untersuchung statistischer Häufigkeitsverteilungen. Sind diese bei genügend großer Zahl von Photonen über Zeit und Raum stabil, lassen sie sich evtl. als stetige Wahrscheinlichkeitsverteilung analytisch beschreiben. Wenn ein einzelnes Photon die Energie $E=h \cdot f$ hat, dann ein Photonenstrom aus N Teilchen $E(N)=N \cdot h \cdot f$. Treffen am Detektor mehr Photonen auf, wird dort eine größere Energiemenge umgesetzt, oder auf Zeiteinheit und Flächenstück bezogen eine größere Intensität registriert. Aus der Wahrscheinlichkeit des Photoneneintrags in einem bestimmten Flächenabschnitt muss sich vorhersagen lassen, welche mittlere Intensität dort zu registrieren sein wird.

  • Tipps

    An Spaltblenden zeigt Licht eindeutig Welleneigenschaften (durch Interferenz und Beugung), aber der Fotoeffekt konnte nur damit erklärt werden, dass man Licht Teilcheneigenschaften unterstellte.

    Sogar Elektronen und Atome zeigen beim Durchgang durch Spaltblenden Interferenz- und Beugungserscheinungen, also Welleneigenschaften.

    Lösung

    Dass Licht eindeutig Welleneigenschaften hat, zeigen die Phänomene der Beugung und Interferenz. Aber der Fotoeffekt wird seit 1905 widerspruchsfrei damit erklärt, dass Licht Energie nur in diskreten Portionen wie kompakte Körper abgibt. Seit 1927 ist experimentell bewiesen, dass sogar Elektronen beim Durchgang durch Spaltblenden Interferenz- und Beugungsbilder erzeugen, also Welleneigenschaften haben. Die diskrete Erscheinung von Teilchen und die kontinuierliche Ausbreitung von Wellen lassen sich nicht in einem vorstellbaren Bild vereinigen. Darum spricht man vom „Dualismus" unvereinbarer Eigenschaften.

  • Tipps

    Ansatz: Wahrscheinlichkeit des Photoneneintrags als relative Häufigkeit berechnen.

    Die Energie der Strahlung ist als Strom aus N Photonen durch $E=N*h*f$ gegeben.

    Intensität ist als Energie pro Zeit und Fläche definiert.

    Lösung

    Die Wahrscheinlichkeit des Photoneneintrags entspricht ungefähr der relativen Häufigkeit. Diese ist durch (mittlere) absolute Häufigkeiten berechenbar. Die Energie eines Photonenstroms ergibt sich aus $E=N*h*f$. Die Intensität des Energieumsatzes an der Fläche $\Delta{A}$ in der Zeit $t$ ergibt sich zu $I=\frac{E}{\Delta{A}*t}$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.225

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden