30 Tage risikofrei testen

Überzeugen Sie sich von der Qualität unserer Inhalte im Basis- oder Premium-Paket.

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage risikofrei testen

Gegenseitige Lage Ebene-Ebene – Übungen

Mit Spaß üben und Aufgaben lösen

Entschuldige, die Übungen sind zurzeit nur auf Tablets und Computer verfügbar. Um die Übungen zu nutzen, logge dich bitte mit einem dieser Geräte ein.

Brauchst du noch Hilfe? Schau jetzt das Video zur Übung Gegenseitige Lage Ebene-Ebene

Zwei Geraden können sich schneiden, parallel, windschief oder identisch sein. Wie können zwei Ebenen zueinander liegen? Diese Frage beantworte ich dir hier. Alles was du brauchst, sind räumliche Vorstellungskraft und Methoden aus der Vektorrechnung. Stell dir vor, du bist in der Disco. Man sieht überall bunte Lichter, und manche Strahler projizieren sogar richtige Farbflächen. Wie können jetzt zwei Farbflächen zueinander liegen? Einmal können sie parallel sein. Das kannst du dir sicher gut vorstellen. Weiter können die beiden Lichtebenen identisch sein. Die letzte Möglichkeit ist, dass sich die Ebenen schneiden. Anders als bei der gegenseitigen Lage von Geraden besitzen zwei Ebenen aber keinen einzelnen Schnittpunkt, sondern eine sogenannte Schnittgerade. Ich zeige dir, wie du mit bestimmten Berechnungen die Fälle unterschieden kannst. Viel Spaß beim Lernen!

Zum Video
Aufgaben in dieser Übung
Benenne die Ebenengleichungen und die verschiedenen Lagebeziehungen.
Stelle dar, wie du die Schnittgerade der beiden Ebenen bestimmst.
Entscheide, welche Aussagen zu den beiden Ebenen $E$ und $F$ passen.
Setze die gegebenen Ebenen in Koordinatenform zu der Ebene $E$ in Beziehung.
Fasse dein Wissen zu den verschiedenen Ebenengleichungen zusammen.
Prüfe die Lagebeziehung der Ebene $E$ zu der Ebene $F_{a,b}$ in Abhängigkeit von $a\in\mathbb{R}$ und $b\in\mathbb{R}$.