30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Titration einer mehrprotonigen Säure 06:08 min

Textversion des Videos

Transkript Titration einer mehrprotonigen Säure

Hallo! Stell dir vor, du möchtest gern die Konzentration einer Schwefelsäure bestimmen. Was kannst du tun? Zur experimentellen Ermittlung der Konzentration wird oft das Verfahren der Säure-Base-Titration durchgeführt. Wie dieses Verfahren genau abläuft und welche Besonderheiten es bei mehrprotonigen Säuren wie der Schwefelsäure gibt, wollen wir uns nun genauer anschauen.

Titration einer Phosphorsäure mit Natronlauge

Zunächst wollen wir uns anschauen, was der Unterschied zwischen einprotonigen und mehrprotonigen Säuren ist.

Säuren sind nach Brönsted Protonendonatoren und wie der Name schon verrät, besitzen mehrprotonige Säuren mehrere Protonen pro Molekül. Diese Protonen werden nacheinander in Stufen an ein Akzeptormolekül abgegeben. Sehen wir uns dazu das Beispiel der dreiprotonigen Phosphorsäure an:

Die mit Natronlauge ablaufende Reaktion ist eine Neutralisation. Durch die Natronlauge wird die Phosphorsäure in drei Stufen deprotoniert. Bei der ersten Deprotonierung entsteht Dihydrogenphosphat. Im zweiten Schritt wird das Dihydrogenphosphat deprotoniert wodurch dann Hydrogenphosphat entsteht und wenn dann in der dritten Stufe völlig deprotoniert, entsteht Phosphat.

Wie unterscheidet sich dadurch der Kurvenverlauf der Titration in einem Volumen-pH-Wert-Diagramm?

Die einzelnen Protolysestufen lassen sich auch im Kurvenverlauf erkennen. Wird zum Beispiel die dreiprotonige Phosphorsäure titriert, dann kannst du mehrere sprunghafte pH-Änderungen erkennen. Der erste Äquivalenzpunkt liegt im sauren Bereich bei etwa 4,2.

Hier erfolgt die Deprotonierung zum Dihydrogenphosphat. Der zweite Äquivalenzpunkt liegt bei 9,1, also im basischen Bereich. Hier findet die zweite Deprotonierung statt und Hydrogenphosphat entsteht.

Die dritte Deprotonierung findet in einem Bereich oberhalb von pH 12 statt. In diesem Bereich ist kein Sprung mehr möglich, weshalb er in der Kurve nicht erkennbar ist.

Auch bei mehrprotonigen Säuren kann man die Konzentration durch Titration experimentell bestimmen. Wir schauen uns das am Beispiel der Schwefelsäure an.

Zur Durchführung nutzen wir eine Natronlauge-Lösung, deren Konzentration uns bekannt ist. Die Natronlauge wird auch als Maßlösung bezeichnet.

Im Becherglas befindet sich die Lösung, welche analysiert werden soll. In unserem Fall ist das Schwefelsäure. In der Bürette befindet sich die Natronlauge. Diese kann nun langsam zugetropft werden. Als Indikator verwendest du Phenolphthalein.

Nach der Titration kannst du nun mit den experimentell bestimmten Daten die Konzentration der Säure berechnen. Am Äquivalenzpunkt ist die Stoffmenge an Hydroxidionen gleich der Stoffmenge an Oxoniumionen.

Da Schwefelsäure eine zweiprotonige Säure ist, aber Natriumhydroxid nur ein Hydroxidion besitzt, benötigen wir zwei Moleküle Natronlauge um ein Molekül Schwefelsäure zu neutralisieren.

Am Äquivalenzpunkt ist die Stoffmenge der verbrauchten Maßlösung also doppelt so hoch wie die der Schwefelsäure. Die Stoffmenge lässt sich dann durch Multiplikation des Volumens mit der Konzentration berechnen.

Angenommen, wir haben bis zum Äquivalenzpunkt 10 ml, also 0,01l der Maßlösung verbraucht und die Konzentration der Natronlauge beträgt 0,1 mol/l. Nun kannst du die Stoffmenge der verbrauchten Maßlösung berechnen. Die verbrauchte Stoffmenge beträgt also 0,001 mol.

Da wir ja eben festgestellt haben, dass am Äquivalenzpunkt die Stoffmenge der Schwefelsäure halb so groß ist, wie die der Natronlauge, beträgt die Stoffmenge der Schwefelsäure also 0,0005 mol.

Nun setzt du nur noch das Volumen, welches du zum Titrieren der Analysenlösung benötigt hast, in die Gleichung ein und kannst die Konzentration berechnen. Nehmen wir mal an, du hast 10 ml der Schwefelsäure titriert, dann beträgt die Konzentration 0,05 mol/l.

Zusammenfassung

Du hast heute gelernt, worin sich mehrprotonige Säuren von einprotonigen Säuren unterscheiden. Du weißt nun, dass sich bei mehrprotonigen Säuren in einem Volumen-pH-Wert-Diagramm mehrere pH-Sprünge und Äquivalenzpunkte erkennen lassen, weil die Säuren auch mehrere Protolysestufen besitzen.

Außerdem hast du gelernt, was du bei einer Bestimmung der Konzentration durch Titration beachten musst. Die Stoffmenge der mehrprotonigen Säure ist nicht gleich der Stoffmenge der Natronlauge, sodass du den Faktor in deiner Rechnung beachten musst. Tschüß und bis bald.

Titration einer mehrprotonigen Säure Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Titration einer mehrprotonigen Säure kannst du es wiederholen und üben.

  • Nenne die Geräte und Chemikalien, die du für eine Titration von Schwefelsäure benötigst.

    Tipps

    Bei einer Titration erfolgt eine Neutralisation.

    Womit lässt sich Schwefelsäure neutralisieren und was benötigt man, um diese Reaktion auch optisch zu verfolgen?

    Lösung

    Die Titration ist ein analytisches Verfahren, um die Konzentration einer Substanz bestimmen zu können. Soll die Konzentration von Schwefelsäure bestimmt werden, kann das mit Natronlauge geschehen. Dabei ist Natronlauge die Maßlösung, das heißt ihre Konzentration ist bekannt. Die nun ablaufende Reaktion ist eine Säure-Base-Reaktion, genauer eine Neutralisation, wobei Säure und Base zu Salz und Wasser reagieren.

    $ 2~NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2~H_2O$

    Den Reaktionsverlauf kann man mit einem Indikator sichtbar machen. Dieser ändert je nach pH-Wert der Lösung die Farbe. Erfolgt also ein Farbumschlag, ist die Titration beendet.

    Um die Menge der zugegebenen Natronlauge möglichst exakt bestimmen zu können, erfolgt die Zugabe über eine Bürette.

  • Definiere den Begriff mehrprotonige Säure.

    Tipps

    Säuren sind immer Protonendonatoren.

    Lösung

    Grundsätzlich sind Säuren Protonendonatoren. Auch mehrprotonige Säuren können Protonen abgeben, nur eben nicht nur ein Proton pro Molekül, sondern mehrere. Die Säurestärke hat damit nichts zu tun, sie beschreibt nur das Gleichgewicht zwischen dissoziiertem und nicht dissoziertem Zustand.

    Beim Titrieren von mehrprotonigen Säuren musst du darauf achten, dass der Faktor bestimmt wird.

  • Formuliere die einzelnen Protolyseschritte der Phosphorsäure.

    Tipps

    Schau dir die Formel der Phosphorsäure an. Wie viele Protonen enthält sie?

    Lösung

    Bei der Protolyse werden die Protonen der Säure an einen Protonenakzeptor (in diesem Fall Natronlauge) abgegeben. Diese Protolyse erfolgt schrittweise. In jeder Protolysestufe stellt sich ein neues Gleichgewicht zwischen den Edukten und den Produkten ein. Dabei ist die Deportonierung in jedem Schritt schwieriger. Während die Phosphorsäure ihr Proton noch recht leicht abgibt, ist es sehr viel schwieriger, das Hydrogenphosphat zu deprotonieren.

    Grundsätzlich bedeutet die Verminderung von einem Proton an der Säure die Erhöhung der negativen Ladung des Anions. Werden also alle drei Protonen der Phosphorsäure entfernt, ist das Anion dreifach negativ geladen.

  • Berechne die Masse der Schwefelsäure.

    Tipps

    Am Äquivalenzpunkt ist die Stoffmenge der Oxoniumionen gleich der Stoffmenge der Hydroxidionen. Deine vorgelegte Säure ist allerdings eine zweiprotonige Säure.

    Die molare Masse der Schwefelsäure lässt sich aus den Atommassen bestimmen:

    • S: 32 $\frac{g}{mol}$
    • O: 16 $\frac{g}{mol}$
    • H: 1 $\frac{g}{mol}$
    Lösung

    Eine Titration ist ein analytisches Verfahren, um Konzentrationen oder Massen zu bestimmen. Wenn du eine unbestimmte Menge an Schwefelsäure in einem Gefäß hast, kannst du diese durch Titration mit Natronlauge ermitteln.

    Du liest die verbrauchte Menge an Natronlauge ab, die bis zum Farbumschlag nötig war. In diesem Fall waren es 20 ml. Die Konzentration der Natronlauge ist bekannt. Damit kannst du nun die Stoffmenge an Natronlauge bestimmen, die du verbraucht hast:

    $n = V\cdot c$

    $n = 0,02~l \cdot 0,1 \frac{mol}{l} = 0,002~mol$

    Da Schwefelsäure eine zweiprotonige Säure ist, muss am Äquivalenzpunkt die Stoffmenge der verbrauchten Natronlauge doppelt so groß sein, wie die der Schwefelsäure. Zur Neutralisation von einem Mol Schwefelsäure müssen 2 Mol (also doppelt so viel) Natronlauge eingesetzt werden.

    $H_2SO_4 + 2~NaOH \rightarrow Na_2SO_4 + 2~H_2O$

    Die Stoffmenge der Schwefelsäure beträgt also:

    $n_S = \frac{n_B}{2} = 0,001~mol$

    Nun kannst du mit der molaren Masse der Schwefelsäure die Masse berechnen.

    $M = 2\cdot H + 4\cdot O +1 \cdot S$

    $M = 2\cdot 1 \frac{g}{mol} + 4\cdot 16 \frac{g}{mol} +1 \cdot 32 \frac{g}{mol} = 98 \frac{g}{mol}$

    Damit ist dann:

    $ m = n \cdot M = 0,001~mol \cdot 98 \frac{g}{mol}$

    Es sind also 0,098 g oder 98 mg Schwefelsäure im Gefäß gewesen.

  • Unterscheide die Titrationen von Salpetersäure und Kohlensäure mit Natronlauge.

    Tipps

    Schreibe dir die Formeln von Salpetersäure und Kohlensäure auf und bestimme die Anzahl der Protonen.

    Kohlensäure

    Salpetersäure

    Lösung

    Salpetersäure und Kohlensäure unterscheiden sich in der Anzahl ihrer Protonen. Bei Salpetersäure $HNO_3$ handelt es sich um eine einprotonige Säure. Sie hat also nur eine Protolysestufe und damit auch nur einen Äquivalenzpunkt. Der pH-Wert des entstandenen Natriumnitrats am Äquivalenzpunkt liegt somit im neutralen Bereich.

    Anders bei der Kohlensäure $H_2CO_3$: Sie hat zwei Protonen und damit auch zwei Protolysestufen. Im pH-Wert-Volumen-Diagramm wird das in zwei Äquivalenzpunkten sichtbar. Das entstehende Salz Natriumcarbonat ist basisch und somit liegt auch der zweite ÄP erst im basischen Bereich.

  • Formuliere die Deprotonierung von Schwefelwasserstoff.

    Tipps

    Die beteiligten Elemente der Säure findest du schon im Namen.

    Schwefelwasserstoff ist eine zweiprotonige Säure.

    Lösung

    Die Protolyse ist die Abgabe von Protonen an ein Akzeptormolekül. Im ersten Schritt gibt Schwefelwasserstoff $H_2S$ ein Proton ab, wodurch das einwertige Anion Hydrogensulfid $HS^-$ entsteht. Im zweiten Schritt wird auch das zweite Proton der Säure abgegeben, wodurch das zweiwertige Sulfidion $S^{2-}$ entsteht.