Ester – Definition
Spricht man von Estern, sind in der Regel die Carbonsäureester gemeint. Es gibt aber auch Ester, die aus anorganischen Säuren gebildet werden.
Die Ester bilden eine eigene Stoffklasse in der Chemie. Hergestellt werden sie durch die Reaktion einer Säure mit einem Alkohol. Dabei kann es sich bei der Säure um eine anorganische Säure (z. B. Salpetersäure oder Schwefelsäure) oder um eine organische Säure (z. B. Essigsäure oder Buttersäure) handeln. Häufig werden jedoch organische Säuren, die sogenannten Carbonsäuren, eingesetzt. Dabei bilden sich die Carbonsäureester, die in den Naturwissenschaften die größte Gruppe der Ester bilden
Die funktionelle Gruppe der organischen Ester bildet sich durch die Verbindung der funktionellen Gruppen der Alkohole $\left( \ce{-OH} \right)$ und der Carbonsäuren $\left( \ce{-COOH} \right)$ heraus.
Die organischen Ester haben alle eine gemeinsame Struktur. Diese wird in der vereinfachten Strukturformel häufig als $\ce{ R1-(C=O)-O-R2}$ oder $\ce{R1-COO-R2}$ geschrieben.
Die funktionelle Gruppe der Ester hat demnach die Struktur $\ce{-COO}-$. Du siehst sie in der folgenden Abbildung rot dargestellt.

Auf der linken Seite ist die allgemeine Strukturformel der Ester abgebildet, auf der rechten Seite siehst du ein konkretes Beispiel: Propansäuremethylester. Dieser Ester wurde aus Propansäure $\left( \ce{CH3-CH2-COOH} \right)$ und Methanol $\left( \ce{CH3-OH} \right)$ gebildet. Wie das genau funktioniert, sehen wir uns weiter unten an.
Zunächst wollen wir auf die Regeln zur Benennung der Ester – also die Nomenklatur – eingehen.
Kennst du das?
Vielleicht hast du schon einmal bemerkt, dass der Duft eines frisch gepflückten Apfels besonders intensiv ist. Dieser frische, fruchtige Geruch kommt unter anderem von Estern, die natürlicherweise in Früchten vorkommen.
Estern verdanken wir die wunderbaren Aromen, die Obst so verlockend machen. Jedes Mal, wenn du an einem Apfel riechst, nimmst du also einen Hauch von Chemie wahr!
Ester – Nomenklatur
Es gibt mehrere Möglichkeiten, Ester in der organischen Chemie zu benennen.
Die erste Möglichkeit haben wir schon in der obigen Abbildung gesehen. Beim Beispiel Propansäuremethylester haben wir den Namen der Säure (Propansäure) dem Namen des Alkylrestes des Alkohols (-methyl als Rest von Methanol) vorangestellt und einfach die Endung -ester hinzugefügt. Bei einer solchen Benennung folgt der Name des Esters also direkt aus seiner Entstehung: Eine Carbonsäure (z. B. Propansäure) und ein Alkohol (z. B. Methanol) haben sich zu einem Carbonsäurealkylester (z. B. Propansäuremethylester) verbunden.
Die zweite Möglichkeit der Benennung folgt der Systematik der IUPAC-Nomenklatur. Demnach bekommen Esterverbindungen die Wortendung -oat. Da organische Ester aus einem Alkohol und einer Carbonsäure zusammengesetzt werden, die beide in der Regel auf Alkanen basieren, können Ester allgemein als Alkylalkanoate bezeichnet werden. Beachte, dass hierbei der Alkylrest des Alkohols vorangestellt werden muss. Unsere Beispielverbindung wird nach dieser Regel also Methylpropanoat genannt.
Die funktionelle Gruppe der Ester hat in den meisten Fällen Vorrang vor anderen funktionellen Gruppen und bildet damit fast immer die Wortendung einer organischen Verbindung. Nur wenn es noch zusätzliche Carbonsäure- oder Anhydrid-Gruppen gibt, wird der Name des Alkylrests mit der Ester-Gruppe als sogenannte Alkoxycarbonyl-Gruppe dem Namen der Carbonsäure oder des Anhydrids vorangestellt. Das oben genannte Beispielmolekül würde beispielsweise Methoxycarbonylpropansäure heißen, wenn am anderen Ende des Propylrests noch eine weitere Carboxygruppe hängen würde.
Die dritte Möglichkeit bezieht sich darauf, einen Ester als Salz der entsprechenden Carbonsäure zu betrachten. Demnach ist der Alkylrest mit der Ester-Gruppe als Säurerest zu verstehen, ähnlich wie beispielsweise das Sulfat-Ion $\left( \ce{SO4^{2-}}\right)$ als Säurerest von Schwefelsäure $\left( \ce{H2SO4} \right)$ in anorganischen Salzen der Schwefelsäure vorkommt, zum Beispiel in Calciumsulfat $\left( \ce{CaSO4} \right)$. Entsprechend kann ein Säurerest mit Ester-Gruppe als Carboxylat-Gruppe oder Carboxylat-Ion bezeichnet werden. Ein solcher Säurerest hat die Struktur $\ce{R1-COO^{-}}$. Bei der Namensgebung des Esters wird dann der Alkylrest des Alkohols dem Carboxylat vorangestellt.
Diese Art der Benennung wird insbesondere dann verwendet, wenn die Ester-Gruppe an einen Ring aus Kohlenstoffatomen gebunden ist, wie beispielsweise bei der Verbindung Methylbenzolcarboxylat $\left( \ce{C6H5-COO-CH3} \right)$. In diesem Beispiel stellt der Benzolring $\left( \ce{C6H5}- \right)$ den Rest $\ce{R1}$ dar und die Methyl-Gruppe den Alkylrest des Alkohols Methanol. Wir haben also auch hier die allgemeine Struktur $\ce{R1-COO-R2}$ und die Endung -carboxylat funktioniert im Prinzip genauso wie die Endung -oat.
Manche Carbonsäuren haben auch Trivialnamen – zum Beispiel Ameisensäure $\left( \ce{HCOOH} \right)$ und Essigsäure $\left( \ce{CH3-COOH} \right)$ statt Methan- bzw. Ethansäure. Bei diesen Säuren bekommt auch das Carboxylat einen speziellen Namen. So wird bei Estern der Ameisensäure die Endung -formiat benutzt und bei Estern der Essigsäure die Endung -acetat, die du vielleicht schon einmal gehört hast. Unser oben gezeigtes Beispielmolekül ist ein Propionat, kann also auch Methylpropionat genannt werden.
Trotz des Vergleichs mit anorganischen Salzen ist zu beachten, dass in organischen Salzen bzw. Estern keine ionischen Bindungen vorliegen. Das Carboxylat-Ion $\ce{R1-COO^{-}}$ stellt eine rein formale Betrachtungsweise dar – tatsächlich ist die Verbindung zwischen Carbonsäure und Alkohol im Ester immer eine kovalente Bindung.
Fehleralarm
Achtung! Ester und Ether sind nicht das Gleiche! Ester werden in der Regel aus Säuren und Alkoholen gebildet, Ether entstehen oft aus zwei Alkoholen. Dementsprechend unterscheiden sich auch die funktionellen Gruppen der beiden Stoffklassen.
In der folgenden Tabelle haben wir noch einmal die unterschiedlichen Möglichkeiten der Benennung verschiedener Esterverbindungen zusammengefasst.
Alkohol |
Carbonsäure |
Carbonsäureester |
IUPAC-Name |
Carboxylat-Bezeichnung |
Methanol |
Propansäure |
Propansäuremethylester |
Methylpropionat |
Methylpropancarboxylat |
$\ce{CH3-OH}$ |
$\ce{CH3-CH2-COOH}$ |
$\ce{CH3-CH2-COO-CH3}$ |
$\ce{CH3-CH2-COO-CH3}$ |
$\ce{CH3-CH2-COO-CH3}$ |
Methanol |
Benzoesäure |
Benzoesäuremethylester |
Methylbenzoat |
Methylbenzolcarboxylat |
$\ce{CH3-OH}$ |
$\ce{C6H5-COOH}$ |
$\ce{C6H5-COO-CH3}$ |
$\ce{C6H5-COO-CH3}$ |
$\ce{C6H5-COO-CH3}$ |
Methanol |
Ethansäure (Essigsäure) |
Essigsäuremethylester |
Methylethanoat |
Methylacetat |
$\ce{CH3-OH}$ |
$\ce{CH3-CH2-COOH}$ |
$\ce{CH3-COO-CH3}$ |
$\ce{CH3-COO-CH3}$ |
$\ce{CH3-COO-CH3}$ |
Methanol |
Ameisensäure |
Ameisensäuremethylester |
Methylmethanoat |
Methylformiat |
$\ce{CH3-OH}$ |
$\ce{HCOOH}$ |
$\ce{HCOO-CH3}$ |
$\ce{HCOO-CH3}$ |
$\ce{HCOO-CH3}$ |
Ethanol |
Ameisensäure |
Ameisensäureethylester |
Ethylmethanoat |
Ethylformiat |
$\ce{CH3-CH2-OH}$ |
$\ce{HCOOH}$ |
$\ce{HCOO-CH2-CH3}$ |
$\ce{HCOO-CH2-CH3}$ |
$\ce{HCOO-CH2-CH3}$ |
Daneben gibt es noch cyclische Ester. Bei diesen ist ein Sauerstoffatom in einen Ring aus Kohlenstoffatomen eingebunden. Solche Ester werden Lactone genannt.
Historisch bedingt leitet sich die Bezeichnung Ester von dem Wort Äther ab. Genauer gesagt handelt es sich um eine verkürzte Form der Bezeichnung Essigäther. So wurde im 19. Jahrhundert die wichtigste Esterverbindung Essigsäureethylester (Ethylacetat) genannt.
Ester – Eigenschaften
Die organischen Ester werden nach ihren Kettenlängen in zwei Gruppen eingeteilt. Von den Fruchtestern spricht man bei kurzkettigen Estern. Langkettige Ester werden hingegen als Fette oder Öle bezeichnet. Die Fette und Öle bestehen aus einem Dreifachalkohol (in der Regel Glycerin) sowie langkettigen Alkansäuren (sogenannten Fettsäuren), die an den Dreifachalkohol gebunden sind. Im Alltag werden dir häufig Fruchtester begegnen, die einen fruchtigen, obstartigen Geruch haben.
Einige gemeinsame Eigenschaften der Ester wollen wir hier einmal festhalten:
- Ester haben eine geringere Dichte als Wasser. Deshalb schwimmen beispielsweise Fette und Öle immer an der Wasseroberfläche.
- Die Moleküle der Ester sind nur gering polar. Deshalb sind Ester nur schlecht bis gar nicht in Wasser löslich. Auch das kennst du bestimmt schon von verschiedenen Ölen.
- Mit zunehmender Kettenlänge nimmt die Löslichkeit in Wasser immer weiter ab. Fruchtester sind also etwas besser wasserlöslich als Fette und Öle. Umso besser sind letztere hingegen in unpolaren Lösungsmitteln wie Benzin löslich.
- Die Schmelz- und Siedetemperaturen der Ester sind relativ niedrig, was direkt auf die geringe Polarität der Moleküle zurückzuführen ist.
- Bei Raumtemperatur und Normaldruck sind die meisten Ester flüssig. Besonders langkettige Ester sind fest. Diese werden auch Wachse genannt.
- Ester sind leicht entzündlich und gut brennbar, denn sie sind flüchtig, d. h. sie gehen relativ leicht in die Gasphase über.
- Vor allem die Fruchtester haben einen fruchtigen, obstartigen Geruch. In vielen Früchten sind Fruchtester enthalten.
- Manche Ester haben auch eine narkotische, also betäubende Wirkung oder können die Atemwege reizen, wenn sie in hoher Konzentration eingeatmet werden.
Die wichtigsten Eigenschaften haben wir auch noch einmal in der folgenden Tabelle zusammengefasst:
Eigenschaft |
Ausprägung |
Aggregatzustand |
flüssig (unter Normalbedingungen) |
Siedebereich |
niedrig siedend |
Polarität |
gering polar (Fette und Öle praktisch unpolar) |
Löslichkeit |
schlecht in Wasser löslich, gut in Benzin löslich |
Farbe |
farblos |
Geruch |
fruchtig, obstartig (insbesondere Fruchtester) |
Verwendung |
Lösemittel (z. B. in Nagellackentferner oder für Klebstoff), Aromastoff, Brennstoff uvm. |
Gefahren |
leicht entzündlich, manche narkotisierend oder reizend |
Ester – Struktur
Im Folgenden wollen wir genauer auf die Molekülstruktur der Ester eingehen. Wir haben bereits gelernt, dass wir die allgemeine Struktur eines Esters mit der Formel $\ce{R1-COO-R2}$, oder genauer $\ce{ R1-(C=O)-O-R2}$, ausdrücken können. Die funktionelle Gruppe der Ester $\ce{-COO}-$, die auch als $\ce{-(C=O)-O}-$ geschrieben werden kann, enthält eine Carbonylgruppe $\left( \ce{C=O} \right)$ und ein weiteres Sauerstoffatom, das mit dem folgenden Alkylrest direkt in die Kette der Kohlenstoffatome eingebunden ist $\left( \ce{-O-} \right)$.
Die Carbonylgruppe ist polar, wirkt sich aber vor allem in Kombination mit längeren Alkylresten nur gering auf die Polarität des gesamten Moleküls aus.
Carbonsäureester
Die meisten Ester sind Carbonsäureester, also Ester, die aus einer organischen Säure (einer Carbonsäure) und einem Alkohol gebildet wurden.
- Carbonsäureester sind rein organische Verbindungen.
- Carbonsäureester werden aus organischen Säuren (z. B. Ameisensäure, Essigsäure, Propansäure, …) und einem Alkohol (z. B. Methanol, Ethanol, Propanol, …) oder auch Phenol $\left( \ce{C6H5-OH} \right)$ gebildet.
- Carbonsäureester können mit der allgemeinen Strukturformel bzw. Halbstrukturformel $\ce{ R1-(C=O)-O-R2}$ dargestellt werden.
Die Reaktionsgleichung der Bildung eines Carbonsäureesters lässt sich wie folgt formulieren:
$\begin{array}{ccccccc} \text{Carbonsäure} & & \text{Alkohol} & & \text{Carbonsäureester} & & \text{Wasser} \\[4pt] \ce{R1-(C=O)-OH} & + & \ce{R2-OH} & \longrightarrow & \ce{R1-(C=O)-O-R2} & + & \ce{H2O} \end{array}$
Für unserer vorheriges Beispiel Propansäuremethylester würde die Gleichung entsprechend so aussehen:
$\begin{array}{cccc} \text{Propansäure} & & \text{Methanol} & \\[4pt] \ce{CH3-CH2-\color{red}{(C=O)-OH}} & + & \ce{CH3-\color{blue}{OH}} & \longrightarrow \\[8pt] \text{Propansäuremethylester} & & \text{Wasser} & \\[4pt] \ce{CH3-CH2-\color{red}{(C=O)}-\color{blue}{O}-CH3} & + & \ce{H2O} & \end{array}$
Das Wassermolekül $\left( \ce{H2O} \right)$ wird durch die Abspaltung der $\ce{OH}$-Gruppe der Carboxygruppe der Säure $\left( \ce{-\color{red}{(C=O)-OH}} \right)$ und die Abspaltung des $\ce{H}$-Atoms der Hydroxygruppe des Alkohols $\left( \ce{-\color{blue}{OH}} \right)$ gebildet und freigesetzt. Eine solche Wasserabspaltung findet bei jeder Esterbildung (einer sogenannten Veresterung) statt. Deshalb ist eine Veresterung auch eine Kondensationsreaktion.
Ester anorganischer Sauerstoffsäuren
Anstelle von organischen Carbonsäuren können Ester auch mit anorganischen Säuren gebildet werden, wenn diese Sauerstoff enthalten. Phosphorsäure $\left( \ce{H3PO4} \right)$, Schwefelsäure $\left( \ce{H2SO4} \right)$ und Salpetersäure $\left( \ce{HNO3} \right)$ sind typische Beispiele solcher anorganischer Sauerstoffsäuren.
- Ester anorganischer Sauerstoffsäuren werden manchmal anorganische Ester genannt, zählen aber eigentlich auch zu den organischen Verbindungen.
- Solche Ester werden aus anorganischen Sauerstoffsäuren (z. B. Phosphorsäure, Schwefelsäure, Salpetersäure, …) und einem Alkohol (z. B. Methanol, Ethanol, Propanol, …) oder auch Phenol $\left( \ce{C6H5-OH} \right)$ gebildet.
- Die Ester anorganischer Sauerstoffsäuren können mit der allgemeinen Strukturformel $\ce{ X-O-R}$ dargestellt werden, wobei $\ce{R}$ der Alkylrest des Alkohols ist und $\ce{X}$ ein bestimmter Säurerest der jeweiligen Sauerstoffsäure.
Wie der Säurerest $\ce{X}$ bei Phosphorsäureestern, Schwefelsäureestern und Salpetersäureestern genau aussieht, sehen wir uns im Folgenden an.
Phosphorsäureester
Phosphorsäureester sind Ester der Phosphorsäure $\left( \ce{H3PO4} \right)$. In der folgenden Abbildung ist die Molekülstruktur der Phosphorsäure und die des Phosphat-Ions $\left( \ce{PO4^{3-}} \right)$ abgebildet.
Phosphorsäure |
Phosphat-Ion |
|
|
$\ce{H3PO4}$ |
$\ce{PO4^{3-}}$ |
Vereinfacht lässt sich die Phosphorsäure mit der Halbstrukturformel $\ce{(OH)2-(P=O)-OH}$ beschreiben. Wir wählen diese Darstellungsweise, damit wir die Reaktion verdeutlichen können, die bei der Veresterung der Phosphorsäure stattfindet:
$\begin{array}{ccccccc} \text{Phosphorsäure} & & \text{Alkohol} & & \text{Phosphorsäureester} & & \text{Wasser} \\[4pt] \ce{(OH)2-\color{red}{(P=O)-OH}} & + & \ce{R-\color{blue}{OH}} & \longrightarrow & \ce{(OH)2-\color{red}{(P=O)}-\color{blue}{O}-R} & + & \ce{H2O} \end{array}$
Im Prinzip läuft die Bildung des Phosphorsäureesters also genau wie bei den Carbonsäuren ab, wobei das Phosphoratom den Platz des Kohlenstoffs der Carboxygruppe $\left( \ce{-\color{red}{(P=O)-OH}} \right)$ einer Carbonsäure einnimmt. Auch hier findet eine Wasserabspaltung statt.
Da die Phosphorsäure allerdings über drei $\ce{OH}$-Gruppen verfügt, ist auch eine mehrfache Veresterung möglich. Bei der gezeigten Reaktion entsteht ein sogenannter Monoester mit der Struktur $\ce{(OH)2-\color{red}{(P=O)}-\color{blue}{O}-R}$. Es kann aber auch ein Diester mit der Struktur $\ce{OH-\color{red}{(P=O)}-(\color{blue}{O}-R)2}$ gebildet werden oder ein Triester mit der Struktur $\ce{\color{red}{(P=O)}-(\color{blue}{O}-R)3}$ – je nachdem, wie viele Alkoholmoleküle sich an die drei verfügbaren $\ce{OH}$-Gruppen der Phosphorsäure anlagern.
Dementsprechend hat der Säurerest $\ce{X}$ in unserer allgemeinen Strukturformel $\ce{ X-O-R}$ die Struktur $\ce{(OH)2-(P=O)}-$, $\ce{OH-(P=O)}-$, oder nur $\ce{(P=O)}-$ und es bilden sich Verbindungen zu einem, zwei oder drei Alkylresten über je ein Sauerstoffatom $\left( \ce{-O-R} \right)$.
Schwefelsäureester
Schwefelsäureester sind Ester der Schwefelsäure $\left( \ce{H2SO4} \right)$. In der folgenden Abbildung ist die Molekülstruktur der Schwefelsäure abgebildet.
Schwefelsäure |
|
$\ce{H2SO4}$ |
Die Schwefelsäure lässt sich vereinfacht mit der Halbstrukturformel $\ce{OH-(SO2)-OH}$ beschreiben. Diese Darstellungsweise hilft uns wieder dabei, zu verdeutlichen, wie die Veresterung der Schwefelsäure abläuft:
$\begin{array}{ccccccc} \text{Schwefelsäure} & & \text{Alkohol} & & \text{Schwefelsäureester} & & \text{Wasser} \\[4pt] \ce{OH-\color{red}{(SO2)-OH}} & + & \ce{R-\color{blue}{OH}} & \longrightarrow & \ce{OH2-\color{red}{(SO2)}-\color{blue}{O}-R} & + & \ce{H2O} \end{array}$
Neben der Bildung des gezeigten Monoesters mit der allgemeinen Struktur $\ce{OH-\color{red}{(SO2)}-\color{blue}{O}-R}$ und dem Säurerest $\ce{OH-(SO2)}-$ ist auch ein Diester mit der Struktur $\ce{\color{red}{(SO2)}-(\color{blue}{O}-R)2}$ und dem Säurerest $\ce{(SO2)}-$ möglich. Einen entsprechenden Triester gibt es hingegen nicht, da die Schwefelsäure über keine dritte $\ce{OH}$-Gruppe verfügt.
Salpetersäureester
Salpetersäureester sind Ester der Salpetersäure $\left( \ce{HSO3} \right)$. In der folgenden Abbildung ist die Molekülstruktur der Salpetersäure abgebildet.
Salpetersäure |
|
$\ce{HNO3}$ |
Auch in diesem Fall können wir die Säure vereinfacht mit der Halbstrukturformel $\ce{NO2-OH}$ darstellen. An dieser Schreibweise kannst du schon erkennen, dass bei der Salpetersäure nur die Bildung eines Monoesters möglich ist, da es nur eine $\ce{OH}$-Gruppe gibt:
$\begin{array}{ccccccc} \text{Salpetersäure} & & \text{Alkohol} & & \text{Salpetersäureester} & & \text{Wasser} \\[4pt] \ce{\color{red}{(NO2)-OH}} & + & \ce{R-\color{blue}{OH}} & \longrightarrow & \ce{\color{red}{(NO2)}-\color{blue}{O}-R} & + & \ce{H2O} \end{array}$
Der Säurerest $\ce{X}$ der allgemeinen Struktur $\ce{ X-O-R}$ hat in diesem Fall die Struktur $\ce{(NO2)}-$.
Allerdings wollen wir bei den Salpetersäureestern noch auf eine weitere Möglichkeit der Veresterung eingehen. Eine Säure kann nämlich auch mit einem Mehrfachalkohol reagieren.
Ein typisches Beispiel ist der Dreifachalkohol Propan-1,2,3-triol $\left( \ce{C3H5(-OH)3} \right)$, besser bekannt unter dem Trivialnamen Glycerin. Das Glycerinmolekül stellt eine Kette aus drei Kohlenstoffatomen dar, wobei an jedes $\ce{C}$-Atom eine $\ce{OH}$-Gruppe gebunden ist:
|
|
$\ce{C3H5(-OH)3}$ |
Jede der $\ce{OH}$-Gruppen kann nun mit einem Säuremolekül verestert werden. So können sich beispielsweise drei $\ce{(NO2)}-$Reste von Salpetersäuremolekülen anlagern:
$\begin{array}{cccc} \text{Glycerin} & & \text{Salpetersäure} & \\[4pt] \ce{C3H5(-\color{blue}{OH})3} & + & \ce{3 \color{red}{(NO2)-OH}} & \longrightarrow \\[8pt] \text{Trisalpetersäureglycerinester} & & \text{Wasser} & \\[4pt] \ce{C3H5(-\color{blue}{O}-\color{red}{NO2})3} & + & \ce{3 H2O} & \end{array}$
Die Verbindung Trisalpetersäureglycerinester (oder auch Glycerintrinitrat) kennst du vielleicht schon unter dem Trivialnamen Nitroglycerin. Das ist ein bekannter Sprengstoff. In der folgenden Abbildung siehst du die Reaktion noch einmal etwas deutlicher dargestellt. Dabei wirkt Schwefelsäure als Katalysator.
Reaktion von Glycerin und Salpetersäure |
|
Die räumliche Struktur des Nitroglycerins kann auch noch etwas genauer dargestellt werden. In der folgenden Abbildung siehst du zwei Darstellungen, die die dreiseitige Struktur des Moleküls verdeutlichen. Diese ergibt sich aus der Anordnung der entgegengesetzten Formalladungen der $\ce{N}$- und $\ce{O}$-Atome, die aus der Bindungsstruktur des Moleküls folgen.
Nitroglycerin (Trisalpetersäureglycerinester) |
|
|
|
Vereinfachte Molekülstruktur |
Darstellung mit Formalladungen |
In der folgenden Tabelle sind noch einmal die allgemeinen Halbstrukturformeln der Monoester, Diester und Triester der gezeigten anorganischen Sauerstoffsäuren aufgelistet.
allgemeine Formel |
Phosphorsäureester |
Schwefelsäureester |
Salpetersäureester |
$\ce{ X-O-R}$ (Monoester) |
$\ce{(OH)2-(P=O)-O-R}$ |
$\ce{OH-(SO2)-O-R}$ |
$\ce{(NO2)-O-R}$ |
$\ce{ X-(O-R)2}$ (Diester) |
$\ce{OH-(P=O)-(O-R)2}$ |
$\ce{(SO2)-(O-R)2}$ |
|
$\ce{ X-(O-R)3}$ (Triester) |
$\ce{(P=O)-(O-R)3}$ |
|
|
Nun wollen wir noch die Ester der anorganischen Säuren (am Beispiel der Salpetersäure) mit den Carbonsäureestern vergleichen. Dabei gehen wir in der folgenden Tabelle auch auf die dreifachen Ester des Glycerins ein (die sogenannten Triglyceride), von denen wir das mit der Salpetersäure gebildete Nitroglycerin bereits kennengelernt haben.
allgemeine Formel |
Carbonsäureester |
Salpetersäureester |
$\ce{ X-O-R}$ (Monoester) |
$\ce{R1-(C=O)-O-R2}$ |
$\ce{(NO2)-O-R}$ |
$\ce{C3H5(-O-X)3}$ (Triglyceride) |
$\ce{C3H5(-(C=O)-O-R)3}$ |
$\ce{C3H5(-O-NO2)3}$ |
Die Triglyceride, die aus verschiedenen Carbonsäuren mit den Alkylresten $\ce{R}$ gebildet werden können, werden auch Tryacylglycerole genannt. Du kennst sie unter dem deutlich einfacheren Begriff Fette.
Übung zur Struktur und Nomenklatur der Ester
Benenne die abgebildeten Esterverbindungen:
$\ce{CH3-(C=O)-O-CH3}$ |
$\ce{CH3-O-(SO2)-O-CH3}$ |
$\ce{CH3-(C=O)-O-C4H9}$ |
|
|
|
Es sind mehrere verschiedene Namen möglich. Wir haben sie in einer kleinen Tabelle zusammengefasst:
$\ce{CH3-(C=O)-O-CH3}$ |
$\ce{CH3-O-(SO2)-O-CH3}$ |
$\ce{CH3-(C=O)-O-C4H9}$ |
Essigsäuremethylester |
Schwefelsäuredimethylester |
Essigsäure-tert-butylester |
Methylethanoat |
Dimethylsulfat |
1,1-Dimethylethylethanoat |
Methylacetat |
Dimethylsulfat |
tert-Butylacetat |
Ester – Vorkommen
Ester begegnen dir im Alltag oft, ohne dass du es weißt. Viele der Lebensmittel, die du täglich zu dir nimmst, enthalten von Natur aus Ester. Besonders in Obst kommen Ester häufig vor. Den Butansäuremethylester findest du beispielsweise unter anderem in Ananassen, Äpfeln sowie Erdbeeren.
Weitere natürliche Quellen für Fruchtester sind unter anderem:
-
Lebensmittel wie beispielsweise Honig und Käse,
-
Genussmittel wie Wein und Rum,
-
Gewürze wie Zimt,
-
Blüten und Blätter wie Jasmin, Kiefer, Lavendel und Salbei.
Auch mit den synthetisch hergestellten Estern wirst du sicherlich im Alltag schon einmal Kontakt gehabt haben. Essigsäureethylester wird zum Beispiel in Nagellackentfernern eingesetzt und ist in vielen Klebstoffen vorhanden.
Aber auch Fette und Öle findest du oft im Alltag. Olivenöl, Sonnenblumenöl oder auch Kokosöl enthalten solche Ester. Noch langkettigere Ester findest du aber auch in Bienenwachs wieder.
Der wohl bekannteste anorganische Ester ist Nitroglycerin. Es handelt sich hierbei um einen Ester, der aus dem dreiwertigen Alkohol Glycerin und Salpetersäure zusammengesetzt ist. Nitroglycerin, das chemisch korrekt als Glycerinnitrat (bzw. Glycerintrinitrat) oder auch Trisalpetersäureglycerinester bezeichnet wird, ist für die Explosivität von Dynamit verantwortlich. Wie dieser Ester genau aufgebaut ist, haben wir uns weiter oben schon im Detail angesehen.
Wusstest du schon?
Ester können sogar in Medizinprodukten helfen. Zum Beispiel wird Aspirin aus Salicylsäure und Essigsäure hergestellt, wobei ein Ester entsteht (AAS = Acetylsalicylsäure). Diese Verbindung hilft, Schmerzen zu lindern und Fieber zu senken. Also, wenn du das nächste Mal eine Kopfschmerztablette nimmst, denk daran, dass ein kleines Ester‑Molekül dir Erleichterung verschafft!
Ester – Herstellung
Ester lassen sich durch die Reaktion einer Säure mit einem Alkohol herstellen. Zur Herstellung der Ester können unterschiedliche Alkohole mit unterschiedlichen Carbonsäuren kombiniert werden. Hierdurch ergibt sich eine Vielzahl an unterschiedlichen Strukturen der Ester.
Wird eine anorganische Säure (beispielsweise die Phosphorsäure) eingesetzt, bildet sich ein sogenannter anorganischer Ester (beispielsweise ein Phosphorsäureester). Da neben dem Ester bei der Reaktion auch Wasser freigesetzt wird, handelt es sich bei der Esterbildung um eine Kondensationsreaktion.
Wie die verschiedenen Reaktionen mit unterschiedlichen Säuren aussehen, haben wir weiter oben schon betrachtet, als wir uns mit den Strukturen verschiedener Ester befasst haben.
Veresterung
Die Bildung eines Esters aus einer Säure und einem Alkohol wird Veresterung (der Säure) genannt. Die folgende Gleichung ist eine allgemeine Darstellung der Veresterung einer Carbonsäure der Struktur $\ce{R1-(C=O)-OH}$ mit einem Alkohol der Struktur $\ce{R2-OH}$:
$\begin{array}{ccccccc} \text{Carbonsäure} & & \text{Alkohol} & & \text{Carbonsäureester} & & \text{Wasser} \\[4pt] \ce{R1-\color{red}{(C=O)-OH}} & + & \ce{R2-\color{blue}{OH}} & \longrightarrow & \ce{R1-\color{red}{(C=O)}-\color{blue}{O}-R2} & + & \ce{\color{red}{H-O}-\color{blue}{H}} \end{array}$
Die Veresterung einer anorganischen Säure wollen wir uns noch einmal am Beispiel der Phosphorsäure in Erinnerung rufen:
$\begin{array}{ccccccc} \text{Phosphorsäure} & & \text{Alkohol} & & \text{Phosphorsäureester} & & \text{Wasser} \\[4pt] \ce{(OH)2-\color{red}{(P=O)-OH}} & + & \ce{R-\color{blue}{OH}} & \longrightarrow & \ce{(OH)2-\color{red}{(P=O)}-\color{blue}{O}-R} & + & \ce{\color{red}{H-O}-\color{blue}{H}} \end{array}$
Für die Bildung der organischen Ester ist in der Regel ein Katalysator notwendig. Hierfür wird meist eine starke anorganische Säure eingesetzt. Die Veresterung durch diese sogenannte Säurekatalyse wird auch Fischer-Veresterung genannt.
Im Zusammenhang mit der Herstellung von Estern wirst du auch oft auf die Begriffe Verseifung und Hydrolyse stoßen. Was diese beiden Begriffe bedeuten, wollen wir nun klären.
Hydrolyse
Die Hydrolyse ist die Umkehrreaktion der Kondensationsreaktion. Da es sich bei der Veresterung um eine Kondensationsreaktion handelt, ist mit Hydrolyse in diesem Zusammenhang die Umkehrreaktion der Veresterung – also die Spaltung eines Esters – gemeint. Eine entsprechende, allgemein formulierte Reaktionsgleichung der Hydrolyse eines Carbonsäureesters sieht demnach so aus:
$\begin{array}{ccccccc} \text{Carbonsäureester} & & \text{Wasser} & & \text{Carbonsäure} & & \text{Alkohol} \\[4pt] \ce{R1-\color{red}{(C=O)}-\color{blue}{O}-R2} & + & \ce{\color{red}{H-O}-\color{blue}{H}} & \longrightarrow & \ce{R1-\color{red}{(C=O)-OH}} & + & \ce{R2-\color{blue}{OH}} \end{array}$
Hierbei wird also durch die Einbindung eines Wassermoleküls $\left( \ce{H2O} \right)$ der Ester gespalten. Deshalb auch der Begriff Hydrolyse, was so viel wie durch Wasser vermittelte Auflösung bedeutet. Die Hydrolyse eines Esters findet, genau wie die Veresterung, im sauren Milieu statt.
Verseifung
Mit Verseifung ist im Prinzip nichts anderes als die Hydrolyse eines Esters gemeint. Während Hydrolyse der allgemeine Begriff für die Umkehrreaktion einer Kondensationsreaktion ist, bezieht sich der Begriff Verseifung direkt auf die Umkehrung einer Veresterung.
Sehen wir uns also nochmal die Reaktionsgleichung der Spaltung eines Esters an – in diesem Fall mit einem konkreten Beispiel, dem Essigsäureethylester:
$\begin{array}{cccc} \text{Essigäureethylester} & & \text{Wasser} & \\[4pt]\ce{CH3-\color{red}{(C=O)}-\color{blue}{O}-CH2-CH3} & + & \ce{\color{red}{H-O}-\color{blue}{H}} & \longrightarrow \\[8pt] \text{Essigsäure} & & \text{Ethanol} & \\[4pt] \ce{CH3-\color{red}{(C=O)-OH}} & + & \ce{CH3-CH2-\color{blue}{OH}} & \end{array}$
Der Begriff Verseifung bezieht sich darauf, dass eine solche Reaktion bei der Herstellung von Seifen aus Fetten zum Einsatz kommt. Fette sind, wie wir bereits gesehen haben, Esterverbindungen von Glycerin mit bestimmten Carbonsäuren, den sogenannten Fettsäuren. Die Verseifung von Fetten geht allerdings über die Abspaltung der jeweiligen Fettsäuren hinaus, denn aus diesen werden im Anschluss Salze gebildet, zum Beispiel durch die Verbindung mit Natrium-Ionen $\left( \ce{Na+} \right)$. Eine Seife ist also das Salz einer Fettsäure. Dieses wird durch die Verseifung aus einem Fett gewonnen.
Am Ende einer Verseifung liegt die entsprechende Carbonsäure also in Form ihres Carboxylat-Ions $\left( \ce{R-COO^{-}} \right)$ vor. Das klappt, weil die Verseifung im alkalischen Milieu, also in Gegenwart einer Lauge, meist Natronlauge $\left( \ce{NaOH} \right)$, stattfindet. Dies ist ein wesentlicher Unterschied zur vorher besprochenen sauren Hydrolyse. Während die saure Hydrolyse eine reversible Reaktion darstellt, ist die Verseifung irreversibel. Vereinfacht lässt sich der Prozess folgendermaßen darstellen:
$\begin{array}{cccc} \text{Carbonsäureglycerinester (Fett)} & & \text{Natronlauge} & \\[4pt] \ce{C3H5(-O-(C=O)-R)3} & + & \ce{3 NaOH} & \longrightarrow \\[8pt] \text{Natriumcarboxylat (Seife)} & & \text{Glycerin} & \\[4pt] \ce{3 [Na^{+}R-(C=O)-O^{-}]} & + & \ce{C3H5(-OH)3} & \end{array}$
In der folgenden Abbildung haben wir noch einmal Hin- und Rückreaktion der Veresterung bzw. Hydrolyse für das Beispiel Essigsäureethylester dargestellt:

Allerdings trifft der Begriff Verseifung streng genommen für die Umkehrreaktion nur dann zu, wenn die Essigsäure am Ende in Form des Acetat-Ions $\left( \ce{CH3-(C=O)-O^{-}} \right)$ vorliegt.
Die säurekatalysierte Veresterung und die saure Hydrolyse bilden eine Gleichgewichtsreaktion:
$\ce{R1-\color{red}{(C=O)-OH} + R2-\color{blue}{OH}} \xrightleftharpoons{\ce{H+}} \ce{R1-\color{red}{(C=O)}-\color{blue}{O}-R2 + \color{red}{H-O}-\color{blue}{H}}$
In beide Richtungen findet ein mehrschrittiger Prozess statt, wobei mehrfach $\ce{H}$-Atome umgelagert werden. Wird das Wasser aus der Reaktion abgeführt, kann das Gleichgewicht in Richtung der Esterbildung verschoben werden (nach dem Prinzip von Le Chatelier).
Ester – Verwendung in der Industrie
In der chemischen Industrie werden sowohl Fruchtester als auch Fette, Öl und Wachse verwendet und weiterverarbeitet. Dabei können die Esterverbindungen aus Pflanzen gewonnen werden, insbesondere aus deren Früchten und Ölen, oder auch künstlich hergestellt werden, durch die Veresterung einer Säure mit einem Alkohol.
Im Folgenden sehen wir uns einige Anwendungen von solchen industriell hergestellten oder verarbeiteten Estern an.
Aromastoffe
Das fruchtige, süße Aroma von Früchten ist heute in vielen Lebensmitteln zu finden. Das ist unter anderem auf Esterverbindungen zurückzuführen. Diese werden entweder in ihrer natürlichen Form (natürliche Aromen) zugesetzt oder künstlich hergestellt (künstliche Aromen). So kann der Geschmack von beliebten Obstsorten oder Beeren imitiert werden. Beispielsweise riecht Essigsäurepentylester nach Banane und und Buttersäuremethylester nach Ananas.
Die künstlich hergestellten Estermoleküle unterscheiden sich dabei nicht von den natürlich vorkommenden, aber oft lässt sich dennoch ein kleiner geschmacklicher Unterschied feststellen, da am Geschmack bzw. Aroma einer echten Frucht noch einige andere Moleküle beteiligt sind, die den Gesamteindruck beeinflussen.
Als Duftstoffe werden Ester außerdem nicht nur in Lebensmitteln, sondern auch in der Parfümindustrie eingesetzt.
Fette und Biodiesel
Langkettige Ester wie Fette, Öle und Wachse werden ebenfalls in der Lebensmittelindustrie eingesetzt, können aber auch als Schmierstoffe oder Brennstoffe verwendet werden. Wir können in diesem Zusammenhang wieder zwischen natürlich und künstlich hergestellten Ölen bzw. Estern unterscheiden. Natürliche Fette sind aus langkettigen Carbonsäuren (den sogenannten Fettsäuren) und dem Alkohol Glycerin zusammengesetzt. Das sind die sogenannten Triglyceride, die wir weiter oben schon besprochen haben. Künstliche Fette, Öle und Wachse werden meist aus einzelnen Bestandteilen von Erdöl synthetisiert.
Eine besondere Rolle spielen Ester im Biodiesel. Das ist ein Kraftstoff, der ausschließlich aus pflanzlichen (und damit nachwachsenden) Rohstoffen hergestellt wird. Hier sind es natürliche Fettsäuren, die mit Methanol zu Fettsäuremethylestern verarbeitet werden. Solche Ester werden als FAME bezeichnet, abgeleitet von der englischen Bezeichnung fatty acid methyl ester, und bilden den Hauptbestandteil von Biodiesel.
Lösungsmittel
Viele Ester sind bei Raumtemperatur flüssig. Die funktionelle Gruppe der Ester weist zwar eine geringe Polarität auf, aber aufgrund der oft langkettigen Alkylreste sind die meisten Ester trotzdem im Wesentlichen unpolar. Damit sind sie gut als Lösungsmittel für unpolare Stoffe geeignet und werden zum Beispiel in Klebstoffen eingesetzt.
Kunststoffe
Einzelne Estermoleküle können auch miteinander verknüpft werden und so extrem lange Molekülketten bilden. Solche Molekülketten nennt man Polymere. Kunststoffe sind nichts anderes als Polymere – und eine ganz bekannte Gruppe von Kunststoffen sind die Polyester.
In der Abbildung siehst du einen einfachen Polyester, bei dem sich das Molekül der Propansäure immer wieder wiederholt, was durch die Sterne (*) angedeutet ist. Das Molekül wurde $n$-fach verestert und bildet so einen Polyester.
Einfache Darstellung eines Polyesters |
|
Es gibt aber noch deutlich mehr Polyester mit verschiedenen Molekülstrukturen, die auch noch weitere funktionelle Gruppen enthalten können. Am bekanntesten ist wahrscheinlich Polyethylenterephthalat, abgekürzt PET, das aus Ethylenglycol und Terephthalsäure zusammengesetzt wird.
Wichtig bei der Bildung eines Polyesters ist, dass der Alkohol über zwei Hydroxygruppen $\left( \ce{-OH} \right)$ und die Säure über zwei Carboxygruppen $\left( \ce{-COOH} \right)$ verfügen. Nur so ist die Polymerisation, also die Verkettung der Moleküle, zu einem Polyester möglich.
Polyester findest du in synthetischen Textilien, Plastikflaschen, Folien, Lacken und vielem mehr. Sie werden auch als sogenannte Weichmacher in anderen Kunststoffen eingesetzt, die selbst keine Polyester sind.
Fassen wir nochmal die wichtigsten Anwendungen der Ester zusammen:
- Fruchtester: natürliche Aromastoffe in Früchten, künstliche Aromen in verarbeiteten Lebensmitteln
- Fette: Nährstoffe in Lebensmitteln, Schmierstoffe in technischen Anwendungen
- Öle: Nährstoffe in Lebensmitteln, Schmierstoffe und Brennstoffe in technischen Anwendungen, Bestandteil von Biodiesel, außerdem unpolare Lösungsmittel
- Wachse: Brennstoffe in Kerzen
- Polyester: Kunststoffe für synthetische Textilien, Plastikflaschen, Folien, Lacke, als Weichmacher uvm.
Die Verwendung der Ester von anorganischen Sauerstoffsäuren unterscheidet sich teilweise deutlich von den Anwendungen der organischen Carbonsäureester:
- Einige Phosphorsäureester sind hochgiftig und können als Insektizide oder sogar als chemische Kampfstoffe eingesetzt werden.
- Bestimmte Schwefelsäureester werden als Tenside in Reinigungsmitteln verwendet.
- Viele Salpetersäureester sind explosiv, d. h. sie zersetzen sich explosionsartig. So dient beispielsweise Nitroglycerin (Glycerintrinitrat) als Sprengstoff im Dynamit. Die Verbindung kommt aber auch als Arzneistoff zum Einsatz.
Ausblick – das lernst du nach Ester
Vertiefe dein Wissen über Veresterung und Esterverseifung! Lerne außerdem Fette und Öle sowie Aromaten kennen und entdecke die spannenden Prozesse dieser organischen Verbindungen. Mache dich bereit, deine chemischen Kenntnisse auf ein neues Level zu heben!
Zusammenfassung der Ester
-
Ester sind organische Verbindungen, die sich aus einer Säure und einem Alkohol zusammensetzen. Den Prozess zur Herstellung eines Esters nennt man Veresterung. Es handelt sich um eine Kondensationsreaktion.
- Ester, die auf organischen Säuren basieren, heißen Carbonsäureester (z. B. Essigsäureethylester, auch Ethylacetat). Sie werden von den Estern anorganischer Sauerstoffsäuren unterschieden (z. B. Trisalpetersäureglycerinester, auch Glycerintrinitrat).
- Ester werden auch nach ihrer Kettenlänge unterschieden. Kurzkettige Ester sind Fruchtester, die in Früchten vorkommen. Langkettige Ester sind Fette, Öle oder Wachse.
-
Polyester sind Kunststoffe, die aus langen Ketten von Estermolekülen synthetisiert werden.
- Carbonsäureester kommen als Aromastoffe, Schmiermittel, Brennstoffe und als Kunststoffe in Textilen, Plastikflaschen und vielen anderen Anwendungen zum Einsatz.
Häufig gestellte Fragen zum Thema Ester
Welche Eigenschaften haben Ester?
Ester sind organische Verbindungen, die aus einer Säure und einem Alkohol zusammengesetzt sind. Sie haben oft einen angenehmen, fruchtigen Geruch und sind in der Regel unter Normalbedingungen flüssig und leicht flüchtig. Ester sind in Wasser meist schlecht löslich, lösen sich aber gut in organischen, unpolaren Lösungsmitteln und sind auch selbst oft gute unpolare Lösungsmittel. Sie können durch Hydrolyse in ihre Ausgangsstoffe, also die Säure und den Alkohol, gespalten werden.
Wo findet man Ester im Alltag?
Ester, insbesondere Carbonsäureester, begegnen uns im Alltag vor allem als Aromastoffe in Lebensmitteln und Getränken, als Duftstoffe in Parfüms und als Lösungsmittel in Lacken, Farben und Klebstoffen. Auch in natürlichen Ölen und Fetten sind Ester enthalten. Sie spielen eine wichtige Rolle in der Lebensmittelindustrie, um Geschmack und Geruch von Produkten zu verbessern.
Die Toxizität von Estern kann stark variieren und hängt von der spezifischen Esterverbindung ab. Viele Ester sind nicht giftig und werden sogar in Lebensmitteln als Aromastoffe verwendet. Es gibt jedoch auch Ester, die reizend oder schädlich sein können, insbesondere bei Einatmen oder Hautkontakt. Daher ist es wichtig, Sicherheitsdatenblätter und Produktinformationen zu beachten, wenn man mit Estern arbeitet. Einige Ester anorganischer Sauerstoffsäuren, insbesondere manche Phosphorsäureester, sind hoch toxisch.
Ester können oft an ihrem fruchtigen, obstartigen oder blumigen Geruch erkannt werden. Chemisch können sie durch ihre funktionelle Gruppe, die Estergruppe $\left( \ce{-(C=O)-O}- \right)$, identifiziert werden. In der Schule werden oft einfache Tests durchgeführt, wie die Hydrolyse von Estern, um ihre Anwesenheit nachzuweisen. Für genauere Analysen werden instrumentelle Methoden wie die Gaschromatographie oder Massenspektrometrie verwendet.
Ester werden durch eine chemische Reaktion zwischen einer Säure (oft einer Carbonsäure) und einem Alkohol gebildet. Diese Reaktion wird Veresterung genannt und ist eine Gleichgewichtsreaktion, bei der auch Wasser entsteht. Die Umkehrung dieser Reaktion, bei der ein Ester in eine Säure und einen Alkohol gespalten wird, nennt man Hydrolyse oder Verseifung (abhängig von den Reaktionsbedingungen). Säuren oder Basen können diese Reaktionen als Katalysatoren beschleunigen.
Wo kommen Ester in der Natur vor?
Ester kommen in der Natur in vielen verschiedenen Formen vor. Sie sind Bestandteile von Fetten und Ölen, die in Pflanzen und Tieren vorkommen. Außerdem sind sie in vielen Früchten und Blüten enthalten, wo sie für den charakteristischen Geruch und Geschmack verantwortlich sind. Ester spielen auch eine Rolle bei der Bildung von Wachsen, die Pflanzen als Schutzschicht dienen und sind auch Bestandteil von Bienenwachs.
Ester haben eine Vielzahl von Wirkungen. In der Natur dienen sie Pflanzen und Tieren als Energiespeicher oder Schutzschicht. In der Industrie werden sie als Lösungsmittel, als Kunststoffe oder in der Herstellung von Aromastoffen und Duftstoffen verwendet. In Lebensmitteln und Getränken verbessern sie Geruch und Geschmack.
Wie heißt die funktionelle Gruppe der Ester?
Die funktionelle Gruppe der Ester ist die Ester-Gruppe. Bei Carbonsäureestern setzt sich diese aus einer Carbonylgruppe $\left( \ce{R1-(C=O)} \right)$ und einer Alkoxygruppe $\left( \ce{-O-R2} \right)$ zusammen, wobei $\ce{R1}$ und $\ce{R2}$ jeweils für einen Alkylrest (oder Arylrest) stehen. Deshalb wird die Ester-Gruppe auch Alkoxycarbonyl-Gruppe $\left( \ce{-(C=O)-O}- \right)$ genannt. Die allgemeine Struktur eines Carbonsäureesters lautet also $\ce{R1-(C=O)-O-R2}$ bzw. $\ce{R1-COO-R2}$.
In den Salzen der Carbonsäuren taucht die Ester-Gruppe als Carboxylat-Gruppe in Form eines Ions $\left(\ce{R1-(C=O)-O^{-}} \right)$ auf.
Bei den Estern der anorganischen Sauerstoffsäuren sind mehrere Anordnungen möglich, die mit der Grundstruktur $\ce{X-O-R}$ ausgedrückt werden können, wobei $\ce{X}$ ein bestimmter Säurerest der jeweiligen Sauerstoffsäure ist. Angelehnt an diesen Säurerest werden dann auch die Ester benannt. So sind beispielsweise Phosphorsäureester auch Phosphate, Schwefelsäureester sind Sulfate und Salpetersäureester sind Nitrate, denen jeweils der Name des Alkylrestes (des Alkohols) vorangestellt wird.
Warum sind Ester in der Industrie wichtig?
Ester spielen eine wichtige Rolle in der chemischen Industrie. Sie werden als Lösungsmittel, Weichmacher, in der Herstellung von Kunststoffen und als Ausgangsstoffe für Synthesen verwendet. In der Lebensmittel- und Parfümindustrie sind sie aufgrund ihrer angenehmen Gerüche und Geschmäcke als Aroma- und Duftstoffe unverzichtbar. Ihre vielseitigen Eigenschaften machen sie zu wichtigen Bestandteilen in vielen Produkten und Prozessen.
Wie werden Esterverbindungen synthetisiert?
Esterverbindungen werden hauptsächlich durch die Veresterung, eine Reaktion zwischen einer Säure (meist einer Carbonsäure) und einem Alkohol, synthetisiert, also hergestellt. Diese Reaktion wird oft durch die Zugabe einer Säure oder Base als Katalysator beschleunigt. Industriell werden Ester auch durch direkte Veresterung von Carbonsäuren mit Alkoholen unter Druck und bei hohen Temperaturen hergestellt.
Es gibt aber auch andere Methoden zur Esterherstellung, wie die Umesterung, bei der ein Ester zu einem anderen Ester umgesetzt wird, indem entweder der Alkohol- oder der Säureteil des Esters durch einen jeweils anderen ausgetauscht werden.
Wie beeinflussen Esterverbindungen unseren Körper?
Die Wirkung von Esterverbindungen auf den menschlichen Körper kann sehr unterschiedlich sein und hängt von der spezifischen Verbindung ab. Viele Ester sind harmlos und werden als Aromastoffe in Lebensmitteln verwendet. Einige Ester können jedoch reizend auf Haut und Augen wirken oder bei Einatmen gesundheitsschädlich sein. Es ist wichtig, bei der Handhabung von Estern Vorsicht walten zu lassen und geeignete Schutzmaßnahmen zu treffen.
Wofür werden Esterverbindungen in der Kosmetik eingesetzt?
In der Kosmetikindustrie werden Ester aufgrund ihrer angenehmen Düfte und ihrer pflegenden Eigenschaften geschätzt. Sie dienen als Duftstoffe in Parfüms, Cremes und Lotionen. Einige Ester haben auch emollierende Eigenschaften, was bedeutet, dass sie die Haut weich und geschmeidig machen. Außerdem werden Ester als Lösungsmittel für andere kosmetische Inhaltsstoffe verwendet. Bestimmte Schwefelsäureester sind zudem als Tenside Bestandteil von Reinigungsmitteln wie Shampoos und Duschgels.