30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Kreuzungsversuche – Wahrscheinlichkeit der Vererbung berechnen 14:56 min

Textversion des Videos

Transkript Kreuzungsversuche – Wahrscheinlichkeit der Vererbung berechnen

Hallo, willkommen zum Video zum Thema „Wahrscheinlichkeit der Vererbung“! In diesem Video erfährst du, was die Mendelsche Genetik und seine Kreuzungsversuche mit Wahrscheinlichkeitsrechnung zu tun haben. Du wirst lernen, die Gesetze der Statistik anzuwenden, um genetische Fragestellungen zu beantworten. Um dieses Video optimal zu verstehen, ist folgendes Vorwissen nötig: Du solltest bereits die Mendelschen Regeln der Vererbung verstanden und verinnerlicht haben. Du solltest in der Lage sein, ein Kreuzungsschema zu erstellen. Es ist wichtig, dass dir klar ist, was ein Gen ist. Du solltest auch wissen, was ein Allel ist: nämlich eine Variation des Gens, das für eine bestimmte Merkmalsausprägung kodiert. Außerdem solltest du wissen, was homozygot, also reinerbig (AA, aa), und heterozygot, also mischerbig (Aa), bedeutet. Du solltest die Begriffe dominant, gekennzeichnet durch Großbuchstaben, und rezessiv, gekennzeichnet durch Kleinbuchstaben, verstanden haben. Die Mendelschen Regeln beruhen auf den Gesetzen der Wahrscheinlichkeit. Genauer gesagt, handelt es sich um spezielle Anwendungen der Wahrscheinlichkeitsrechnung, beziehungsweise der Statistik. Die Spaltungsregel und die unabhängige Segregation der Allele können also auch statistisch erklärt werden. Für das Verständnis der genetischen Analysen benötigst du folgende statistische Grundkenntnisse: Die Wahrscheinlichkeit, dass ein bestimmtes Ereignis eintritt, variiert zwischen Null und Eins. Ein unmögliches Ereignis, das mit Sicherheit nicht abläuft, hat die Wahrscheinlichkeit Null. Ein Ereignis, das mit absoluter Sicherheit eintritt, also ein sicheres Ereignis, hat die Wahrscheinlichkeit Eins. Die Wahrscheinlichkeit eines Ereignisses ergibt sich aus der Anzahl der Ergebnisse, bei denen das Ereignis eintritt, dividiert durch die Anzahl der insgesamt möglichen Ergebnisse. Beim Münzenwerfen kann man viel über Wahrscheinlichkeitsrechnung lernen. Beim Werfen einer Münze, die auf der einen Seite einen Kopf und auf der anderen Seite eine Zahl aufweist, ist die Wahrscheinlichkeit, eine Zahl zu werfen - also, dass das Ereignis „Zahl“ eintritt – 1/2. Die Wahrscheinlichkeit beträgt also 1/2. Das Ergebnis ist unabhängig von den Ergebnissen früherer Versuche. Man spricht deshalb von „unabhängigen Ereignissen“. Das heißt: Egal, wie oft du die Münze wirfst - ob ein, zwei oder hundert Mal - die Chance, eine Zahl zu werden, wird immer 1/2 bleiben. Die Segregation der Allele bei der Keimzellenbildung kann statistisch gesehen mit dem Werfen einer Münze verglichen werden. Eine diploide Urkeimzelle hat noch einen zweifachen Chromosomensatz und weist somit zwei Allele auf. Wir nehmen Aa. Bei der Bildung der haploiden Keimzelle wird der Chromosomensatz halbiert. Die Keimzelle, die bei der Befruchtung beteiligt sein wird, kann entweder das Allel A oder das Allel a tragen. Die Wahrscheinlichkeit für das Ereignis „Allel A“ beträgt ½, wie beim Münzenwerfen. Die Wahrscheinlichkeit, dass das Allel a an die Keimzelle weitergegeben wird, die an der Befruchtung beteiligt sein wird, beträgt dementsprechend ebenfalls ½. Bevor wir auf Kreuzungsversuche eingehen, müssen wir zuerst die Multiplikationsregel besprechen. Die Multiplikationsregel wird auch Produktregel genannt. Möchte man die Wahrscheinlichkeit, dass mehrere unabhängige Ereignisse zusammen eintreten, berechnen, so bestimmt man zunächst die Einzelwahrscheinlichkeiten und multipliziert diese dann miteinander. Wie hoch ist die Wahrscheinlichkeit, dass bei zwei gleichzeitig geworfenen Münzen bei beiden der Kopf oben landet? Anders formuliert: Wie hoch ist die Wahrscheinlichkeit, dass zwei voneinander unabhängige Ereignisse zusammen eintreten, nämlich die Ereignisse „Kopf“ und „Kopf“? Dazu muss man die Wahrscheinlichkeiten für jedes Ereignis berechnen und diese Einzelwahrscheinlichkeiten miteinander multiplizieren. Beide Einzelwahrscheinlichkeiten betragen ½. Nach der Multiplikationsregel beträgt die Wahrscheinlichkeit, also ein ½ • ½, also gleich ¼. Das Werfen einer Münze entspricht den möglichen Ergebnissen einer monohybriden Kreuzung. Nehmen wir eine Pflanze mit dem Erbmerkmal „purpurfarbene Blütenfarbe“. Der Genotyp dieser Pflanze der F1-Generation sei Aa, also heterozygot. Das dominante Allel A soll für die purpurfarbene Blüte kodieren. Das rezessive Allel a kodiert für weiße Blüten. Wir kreuzen die beiden heterozygoten F1-Eltern. Wir nehmen in der F2-Generation eine homozygote Pflanze, die den Genotyp aa trägt. Sie weist somit weiße Blüten auf. Wie hoch ist die Wahrscheinlichkeit, dass eine Pflanze diese Allel-Kombination aufweist? Die Wahrscheinlichkeit, dass der erste Elternteil a vererbt, ist ½. Die Wahrscheinlichkeit, dass der zweite Elternteil auch a vererbt, ist auch ½. Die Gesamtwahrscheinlichkeit ist also ½ • ½, also ¼. Auf das gleiche Ergebnis kommst du, wenn du ein Punnettsches Quadrat erstellst. In der Tabelle werden alle möglichen Allel-Kombinationen sichtbar. In einem der vier Quadrate steht die gewünschte Allel-Kombination aa. Das entspricht einer Wahrscheinlichkeit von eins von vier oder ¼. Du siehst, beide Möglichkeiten führen zum selben Ergebnis. Die Multiplikationsregel lässt sich auch auf dihybride Kreuzungen anwenden. Wir nehmen zwei Elternteile der F1-Generation, die beide die heterozygote Allel-Kombination AaBb aufweisen. Ihr Nachkomme soll die Allel-Kombination aabb aufweisen und somit homozygot-rezessiv sein. Wie groß ist die Wahrscheinlichkeit dieser Allel-Kombination? Wir bestimmen also wieder die Einzelwahrscheinlichkeiten. Der erste Elternteil vererbt das Allel a mit der Wahrscheinlichkeit ½. Auch der zweite Elternteil vererbt das Allel a mit einer Wahrscheinlichkeit ½. Das Gleiche gilt für das Allel b. Es wird vom ersten Elternteil und vom zweiten Elternteil jeweils mit der Wahrscheinlichkeit ½ vererbt. Die Gesamtwahrscheinlichkeit bekommen wir, indem wir die Einzelwahrscheinlichkeiten miteinander multiplizieren. ½ • ½ • ½ • ½ ergibt 1/16. Man kommt auf das gleiche Ergebnis, wenn man eine Punnettsches Quadrat malt. Dieses würde dieses Mal aus 16 Teilquadraten bestehen. Die Lösung der Fragestellung mithilfe der Wahrscheinlichkeitsrechnung ist also viel schneller. Zweites Beispiel: Wir nehmen jetzt eine Kreuzung, bei der in der F1-Generation ein Elternteil AABb und der andere AaBb aufweist. Der Nachkomme der F2-Generation soll den Genotypen AABB aufweisen und somit homozygot für das dominante Allel sein. Wie hoch ist die Wahrscheinlichkeit für diese Allel-Kombination? Wir bestimmen wieder die Einzelwahrscheinlichkeiten. Die Wahrscheinlichkeit, dass der erste Elternteil das Allel A vererbt, liegt bei Eins, da beide Allele A sind und somit mit Sicherheit das Allel A vererbt wird. Das Allel B wird mit der Wahrscheinlichkeit ½ vererbt. Der andere Elternteil vererbt das Allel A mit der Wahrscheinlichkeit ½. Der zweite Elternteil vererbt das Allel B mit der Wahrscheinlichkeit ½. Daraus ergibt sich die Gesamtwahrscheinlichkeit: 1 • ½ • ½ • ½, das ergibt ⅛. Für die statistische Analyse manch anderer Kreuzungsversuche brauchen wir aber noch eine andere statistische Regel, nämlich die Additionsregel. Die Additionsregel wird auch Summenregel genannt. Die Wahrscheinlichkeit eines Ereignisses, für welches es zwei oder mehr unterschiedliche Möglichkeiten gibt, entspricht der Summe der Einzelwahrscheinlichkeiten dieser Ergebnisse. Wir veranschaulichen diese statistische Regel anhand einer einfachen monohybriden Kreuzung. Wir kreuzen zwei Blütenpflanzen der F1-Generation, die beide heterozygot sind. Sie haben also den Genotypen Rr. Das Allel R soll dominant für rote Farbe kodieren. Das rezessive Allel r soll für weiße Blütenfarbe kodieren. Die Blütenpflanze der F2-Generation soll ebenfalls heterozygot sein. Sie hat somit die Allel-Kombination Rr. Wie hoch ist die Wahrscheinlichkeit für eine F2-Pflanze aus dieser Kreuzung, heterozygot zu sein? Es ist wichtig zu beachten, dass es in diesem Fall zwei Möglichkeiten gibt, für die F1-Nachkommen heterozygot zu sein. Bei der ersten Möglichkeit stammt das dominante Allel R vom ersten Elternteil. Die Wahrscheinlichkeit hierfür beträgt ½. Das rezessive Allel r muss in diesem Fall vom zweiten Elternteil stammen. Die Wahrscheinlichkeit hierfür liegt ebenfalls bei ½. Die Wahrscheinlichkeit dieser Möglichkeit beträgt ein ½ • ½, also ¼. Wir müssen jedoch auch die zweite Möglichkeit berücksichtigen. In diesem Fall vererbt der erste Elternteil das Allel r. Die Wahrscheinlichkeit beträgt ½. Das zweite Elternteil vererbt dieses Mal das Allel R. Auch mit der Wahrscheinlichkeit ½. Auch hier liegt die Wahrscheinlichkeit der Möglichkeit bei ½ • ½, also ¼. Es kann immer nur entweder die eine Möglichkeit oder die andere Möglichkeit auftreten. Deshalb muss die Additionsregel angewendet werden. Für die Berechnung der Gesamtwahrscheinlichkeit eines Heterozygoten in der F2-Generation addieren wir also ¼ + ¼ und erhalten das Ergebnis ½. Wir kommen zur Zusammenfassung. Du weißt jetzt, dass die Mendelschen Regeln eine spezielle Anwendung der Statistik ist. Du weißt, was man unter Wahrscheinlichkeit versteht und dass diese Zahlenwerte zwischen Null und Eins annehmen kann. Wir sind auf statistische Grundkenntnisse eingegangen. Dabei haben wir die Multiplikationsregel und die Additionsregel besprochen: Die Multiplikationsregel wird angewendet, wenn unabhängige Ergebnisse zusammen auftreten. Die Additionsregel wird angewendet, wenn es mehrere Möglichkeiten gibt, die zum gleichen Ereignis führen. Danke für deine Aufmerksamkeit. Tschüss, bis zum nächsten Video!

Kreuzungsversuche – Wahrscheinlichkeit der Vererbung berechnen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kreuzungsversuche – Wahrscheinlichkeit der Vererbung berechnen kannst du es wiederholen und üben.

  • Stelle die Gleichung zur Wahrscheinlichkeitsberechnung für diesen Erbgang auf.

    Tipps

    Zwei unabhängige Ereignisse treten gemeinsam auf.

    Lösung

    Es handelt sich um zwei unabhängige Ereignisse, die zusammen eintreten. Es muss die Multiplikationsregel verwendet werden. Die Einzelwahrscheinlichkeiten betragen jeweils $ \frac{1}{2}$, da entweder das A oder a vererbt wird.

  • Beschreibe den Zusammenhang zwischen den Mendelschen Regeln und der Statistik.

    Tipps

    Manche Lücken ergeben sich bereits aus dem Satzbau.

    Lösung

    Die Kreuzungsschema der Mendelschen Regeln zeigen anschaulich deren statistischen Charakter. Man kann dasselbe Ergebnis eines Erbgangs aber auch ohne Kreuzungsschema ermitteln, in dem man die Regeln der Wahrscheinlichkeitslehre anwendet. Die Spaltungsregel und die damit verbundene Verteilung der Allelpaare lässt sich nämlich auch mit der Multiplikationsregel errechnen. Es besteht also ein direkter Zusammenhang zwischen Kreuzungsschema und Statistik.

  • Erkläre die Begriffe der grundlegenden Statistik.

    Tipps

    Synonyme der Begriffe stecken fast immer schon in den Beschreibungen.

    Lösung

    Die Wahrscheinlichkeit eines Ereignisses lässt sich beschreiben als die Anzahl an Ereignissen pro Anzahl der Gesamtereignisse. Ist dieses Verhältnis 1:1, handelt es sich um ein sicheres Ereignis, welches immer eintritt. Bei einem Verhältnis von 0:1 tritt das Ereignis nie auf. Natürlich können auch mehrere Wahrscheinlichkeiten zusammen auftreten. Die Multiplikationsregel besagt, dass verschiedene unabhängige Ereignisse miteinander multipliziert werden, sofern es sich um unabhängige Ereignisse handelt. Die Additionsregel besagt wiederum, dass zwei verschiedene Varianten, die zum gleichen Ereignis führen, miteinander addiert werden.

  • Bestimme die Wahrscheinlichkeit des dihybriden Erbgangs.

    Tipps

    Die Allelverteilungen RrSS und rRSS sind identisch. Die Allele sind also vertauschbar.

    Lösung

    Zunächst errechnet man für die Allelverteilung AaBb mithilfe der Multiplikationsregel die Wahrscheinlichkeit $ \frac{1}{8} $. Für die Allele mit den Merkmalen B bzw. b gibt es aber zwei Varianten. Das B kann von dem einen Elternteil kommen während das b von dem anderen Partner kommt oder umgekehrt. Man muss also zusätzlich die Wahrscheinlichkeit für die Allelverteilung AabB errechnen und anschließend die Additionsregel anwenden. So erhält man eine Gesamtwahrscheinlichkeit von $ \frac{1}{4} $. Dasselbe Ergebnis erhält man auch in einem Punnett-Quadrat (Kreuzungsschema).

  • Berechne die Wahrscheinlichkeit für den dargestellten Erbgang.

    Tipps

    Nutze die Additionsregel.

    Überlege dir zunächst, welche Kombinationsmöglichkeiten sich aus dem Genotyp von F1 ergeben. Auf wie vielen Varianten kann der Genotyp von F2 entstehen?

    Berechne für jede Variante zuerst die Wahrscheinlichkeit durch Multiplikation.

    Addiere zum Schluss die Ergebnisse, um die Gesamtwahrscheinlichkeit zu erhalten.

    Lösung

    Um die Allele der F2-Generation zu erhalten, gibt es zwei Möglichkeiten. Die Wahrscheinlichkeit für jede einzelne Möglichkeit kann mit der Multiplikationsregel errechnet werden. Danach muss mithilfe der Additionsregel die Gesamtwahrscheinlichkeit ermittelt werden.

  • Ermittle die richtige Wahrscheinlichkeit für den gezeigten Erbgang.

    Tipps

    Wende die Multiplikationsregel für dihybride Erbgänge an.

    Lösung

    Für jedes Allel lassen sich zunächst die Einzelwahrscheinlichkeiten bestimmen. Es gibt für die F2-Generation nur eine mögliche Vererbungsvariante, daher muss die Additionsregel nicht angewendet werden, sondern nur die Multiplikationsregel. Das Produkt aller Einzelwahrscheinlichkeiten ergibt dann $ \frac{1}{8} $.