30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Nernst-Gleichung und die Konzentrationsabhängigkeit des Elektrodenpotentials 06:19 min

Textversion des Videos

Transkript Nernst-Gleichung und die Konzentrationsabhängigkeit des Elektrodenpotentials

Hallo! Akkus und Batterien machen uns das Leben leichter. Durch sie wird Strom transportabel. Grundprinzip dieser Systeme ist immer ein galvanisches Element. Wir wollen uns heute ansehen, welche Zusammenhänge es in so einem galvanischen Element gibt und wie sich die Konzentration der Ionen auf die Spannung auswirkt. Hilfsmittel zur Berechnung ist die Nernstsche Gleichung, die ich euch heute näher vorstellen möchte. Als erstes wollen wir uns nochmal ein galvanisches Zelle anschauen. Bekanntestes Beispiel ist das Daniell-Element. Dieses besteht aus zwei Halbzellen, in denen zwei Elektroden aus unterschiedlichen Metallen in eine Elektrolytlösung tauchen. Das Daniell-Element besteht aus einer Kupfer- und einer Zink-Elektrode, welche jeweils in eine Kupfersulfat- bzw. eine Zinksulfat-Lösung tauchen. Nun weißt du ja bereits, dass die chemischen Reaktionen, die einem galvanischen Element zugrunde liegen, Redoxreaktionen sind. Das bedeutet, es werden Elektronen aufgenommen und abgegeben. Mit dem Elektronenfluss, der hier entsteht, ist man in der Lage elektrische Geräte für einen gewissen Zeitraum mit Strom zu versorgen. Im Fall des Daniell-Elements werden zweiwertige Kupferionen zu elementarem Kupfer reduziert. Bei diesem Prozess werden also 2 Elektronen benötigt. Außerdem wird elementares Zink zu zweiwertigen Zink-Ionen oxidiert, wobei die 2 Elektronen frei werden.

Wir wollen uns nun anschauen, welchen Einfluss die Konzentrationen der Ionen, welche sich in der Lösung befinden, auf die erzeugte Spannung haben. Dies kannst du mit der Nernstschen Gleichung ganz leicht überprüfen.

Mit dieser Gleichung lässt sich das Potential E eines galvanischen Elements berechnen. Zunächst benötigen wir das Standardpotenzial der verwendeten Redoxpaare E null. Diese lassen sich der elektrochemischen Spannungsreihe entnehmen. Für das Redoxpaar Kupfer-zwei-plus-Kupfer beträgt es 0,34 Volt und für Zink-zwei-plus-Zink beträgt es -0,76 Volt. Als nächstes benötigst du R, die universelle Gaskonstante und F, die Faraday-Konstante. R und F kannst du dem Tafelwerk entnehmen. Mal angenommen, wir machen unsere Untersuchungen bei Raumtemperatur, man spricht auch von der Standardtemperatur, dann lässt sich für T gleich 293,15 Kelvin, also 20 °C einsetzen.

Diese Gleichung lässt sich noch ein bisschen vereinfachen. Wie du ja gesehen hast, sind R,T und F konstant. Wenn dieser Teil der Gleichung schon mal ausgerechnet wird und gleich der natürliche Logarithmus in den dekadischen umgeformt wird, ergibt sich eine Gleichung, in der dann nur noch z und die Konzentration c fehlen.

Z ist in dieser Gleichung die Anzahl der übertragenen Elektronen. Im Beispiel des Daniell-Elements sind das also 2 Elektronen, damit ist z gleich 2.

Nun können wir schon die Potentiale berechnen.

Als erstes betrachten wir die Kupfer-Halbzelle. Diese soll eine Ionenkonzentration von 0.5 mol/l besitzen. Wir setzen nun alle Werte in die Nernst-Gleichung ein. Du berechnest als erstes den dekadische Logarithmus von 0,5. Für den Logarithmus benötigst du den Taschenrechner. Dann multiplizierst du den Wert mit dem Quotienten aus 0,059 und zwei. Die zwei ist die Anzahl an Elektronen, die bei dieser Reaktion übertragen werden. Anschließend addierst du noch den Wert des Standardpotentials dazu, in diesem Fall also 0,35 Volt.

Wir erhalten einen Wert von 0,3411 V.

Als nächstes berechnen wir das Potential der Zink-Halbzelle. Die Ionenkonzentration in dieser Zelle soll 0,3 mol/l betragen.

Setzen wir wieder alle unsere Werte in die Nernst-Gleichung ein. Du berechnest als erstes wieder den dekadische Logarithmus, diesmal von 0,3. Dann multiplizierst du den Wert mit dem Quozienten aus 0,059 und zwei. Anschließend addierst du noch den Wert des Standardpotentials also -0,76 Volt und wir erhalten einen Wert von -0,775 V.

Du hast nun die Spannungen der beiden Halbzellen. Um nun die Gesamtspannung des Elements berechnen zu können, musst du noch die Differenz bilden. Dazu subtrahierst du das Potenzial des unedleren Metalls vom Potenzial des edleren. Also rechnest du das eben berechnete Potenzial der Kupferhalbzelle minus dem Potenzial der Zinkhalbzelle.

Du setzt nun einfach die beiden berechneten Potentiale in die Gleichung ein und erhältst einen Wert von 1,12 Volt. Das bedeutet unser galvanisches Element erzeugt bei gegebener Konzentration eine Spannung von 1,12 Volt. Du hast nun also gesehen, dass die Spannung, von Batterien und Akkus nicht nur durch die Wahl der Metalle und deren Standardpotentiale bestimmt wird, sondern dass auch die Konzentrationen der Ionen die Spannung verändern. Zur Berechnung von Spannungen hast du die Nernstsche Gleichung kennen gelernt. Diese setzt sich aus den Standardpotenzialen der beteiligten Redoxpaare, aus einem konstanten Term, der Ladungszahl z und dem dekadischen Logarithmus der Konzentration zusammen. Nun kannst du ganz einfach Spannungen von galvanischen Elementen bei gegebenen Konzentrationen berechnen.

Nernst-Gleichung und die Konzentrationsabhängigkeit des Elektrodenpotentials Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Nernst-Gleichung und die Konzentrationsabhängigkeit des Elektrodenpotentials kannst du es wiederholen und üben.

  • Erkläre die Elemente der Nernstgleichung.

    Tipps

    Einige Formelzeichen sind dir sicher bereits bekannt. T kennst du auch aus der Physik und c ist definiert als Stoffmenge je Volumen.

    Lösung

    Um mit einer Formel richtig rechnen zu können, ist es immer wichtig, auch die entsprechenden Formelzeichen zu kennen. E° ist das Standardpotential. Standard bedeutet, dass es unter Standardbedingungen gemessen wurde. R ist die universelle Gaskonstante und F die Faraday-Konstante. Beide Werte findest du im Tafelwerk. T kennst du sicher schon aus der Physik, T steht für die Temperatur. Die eckigen Klammern um eine Größe zeigen dir, dass hier die Konzentration des Stoffes gemeint ist. Das kleine z ist das Zeichen für die Anzahl der übertragenen Elektronen bei der Reaktion.

  • Gib an, was sich mit der Nernstgleichung berechnen lässt.

    Tipps

    Die Nernstgleichung findet Anwendung bei galvanischen Elementen.

    Lösung

    Zwischen einem Metall und seiner Metallsalzlösung in einer Halbzelle entsteht ein Potential. Werden nun zwei Halbzellen miteiander verbunden, entsteht eine Differenz der Elektrodenpotenziale. Diese kannst du dann als Spannung messen. Berechnen lässt sich die Spannung in galvanischen Elementen über die Nernstgleichung.

  • Formuliere die Gleichungen zum Daniell-Element.

    Tipps

    Die Reduktion ist die Aufnahme von Elektronen.

    Das edlere Element wird reduziert, das unedlere wird oxidiert.

    Kupfer ist das edlere Element.

    Lösung

    Im Daniell-Element läuft ein Redoxprozess ab. Kupfer ist das edlere Element, also werden die $Cu^{2+}$-Ionen in der Lösung zu elementarem Kupfer reduziert. Dabei werden zwei Elektronen aufgenommen. Das unedlere Zink wird gleichzeitig reduziert, aus elementarem Zink entstehen $Zn^{2+}$-Ionen unter Freigabe von 2 Elektronen.

    • Oxidation: $Zn \rightarrow Zn^{2+} + 2 e^-$
    • Reduktion: $Cu^{2+} + 2 e^- \rightarrow Cu$

  • Berechne die Konzentration einer Zinksalzlösung.

    Tipps

    Trage alle gegebenen Werte in die Nernstgleichung ein und stelle nach c um.

    z ist für diese Reaktion 2.

    $lg \cdot c = n$

    $10^n = c$

    Die Einheit ist mol/l.

    Lösung

    Zunächst setzt du wieder alle gegebenen Werte in die Nernstgleichung ein.

    $-0,8 = -0,76 V + \dfrac{0,059 V}{2} \cdot lg c$

    Nun kannst du anfangen, umzuformen:

    $-0,04 = \dfrac{0,059 V}{2} \cdot lg c$

    $-1,3559 = lg c$

    $c = 10^{-1,3559}$

    $c = 0,044~frac{mol}{l}$

  • Bestimme bei folgenden galvanischen Elementen, welches Metall reduziert und welches oxidiert wird.

    Tipps

    Das edlere Metall wird reduziert.

    Je höher das Standardpotential, desto edler das Metall.

    Lösung

    Wenn zwei Halbzellen aus unterschiedlichen Metallen miteinander verbunden werden, wird immer das edlere Metall reduziert und das unedlere oxidiert. Je unedler ein Metall ist, desto geringer sein Standardpotential und je edler, desto höher. Die Standardpotentiale lassen sich in der elektrochemischen Spannungsreihe ablesen. Im ersten Fall ist also Silber edler als Eisen, daher wird Silber reduziert und Eisen oxidiert. Im zweiten Fall wird Kupfer reduziert und Lithium oxidiert und im dritten Fall wird Gold reduziert und Zink oxidiert.

  • Berechne das Potential in einer Kupferhalbzelle.

    Tipps

    $E = E° + \dfrac{0,059 V}{z} \cdot lg \cdot c$

    z ist die Anzahl der übertragenen Elektronen.

    Die Einheit vom Potential ist die Einheit der Spannung.

    Die Einheit ist Volt.

    Lösung

    Um die Spannung in der Halbzelle zu berechnen, setzt du die gegebenen Werte in die vereinfachte Nernstgleichung ein.

    Das Standardpotential E° ist mit 0,35 V gegeben. Die Konzentration ist mit 0,1 mol/l angegeben und die Zahl der übertragenen Elektronen beträgt bei Kupfer zwei. Nun kannst du alle Werte einsetzen:

    $E = 0,35 V + \dfrac{0,059 V}{2} \cdot lg \cdot 0,1 $

    $E = 0,32 V~$